7au2: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
Line 1: Line 1:


==Cryo-EM structure of human exostosin-like 3 (EXTL3)==
==Cryo-EM structure of human exostosin-like 3 (EXTL3)==
<StructureSection load='7au2' size='340' side='right'caption='[[7au2]]' scene=''>
<StructureSection load='7au2' size='340' side='right'caption='[[7au2]], [[Resolution|resolution]] 2.43&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7AU2 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7AU2 FirstGlance]. <br>
<table><tr><td colspan='2'>[[7au2]] is a 2 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7AU2 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7AU2 FirstGlance]. <br>
</td></tr><tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7au2 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7au2 OCA], [https://pdbe.org/7au2 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7au2 RCSB], [https://www.ebi.ac.uk/pdbsum/7au2 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7au2 ProSAT]</span></td></tr>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=BMA:BETA-D-MANNOSE'>BMA</scene>, <scene name='pdbligand=MAN:ALPHA-D-MANNOSE'>MAN</scene>, <scene name='pdbligand=NAG:N-ACETYL-D-GLUCOSAMINE'>NAG</scene></td></tr>
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[https://en.wikipedia.org/wiki/Glucuronosyl-galactosyl-proteoglycan_4-alpha-N-_acetylglucosaminyltransferase Glucuronosyl-galactosyl-proteoglycan 4-alpha-N- acetylglucosaminyltransferase], with EC number [https://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.4.1.223 2.4.1.223] </span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7au2 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7au2 OCA], [https://pdbe.org/7au2 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7au2 RCSB], [https://www.ebi.ac.uk/pdbsum/7au2 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7au2 ProSAT]</span></td></tr>
</table>
</table>
== Disease ==
[[https://www.uniprot.org/uniprot/EXTL3_HUMAN EXTL3_HUMAN]] Skeletal dysplasia-T-cell immunodeficiency-developmental delay syndrome. The disease is caused by variants affecting the gene represented in this entry.
== Function ==
[[https://www.uniprot.org/uniprot/EXTL3_HUMAN EXTL3_HUMAN]] Glycosyltransferase which regulates the biosynthesis of heparan sulfate (HS). Important for both skeletal development and hematopoiesis, through the formation of HS proteoglycans (HSPGs) (PubMed:28132690, PubMed:28148688). Required for the function of REG3A in regulating keratinocyte proliferation and differentiation (PubMed:22727489).<ref>PMID:22727489</ref> <ref>PMID:28132690</ref> <ref>PMID:28148688</ref> 
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Heparan sulfate is a highly modified O-linked glycan that performs diverse physiological roles in animal tissues. Though quickly modified, it is initially synthesised as a polysaccharide of alternating beta-D-glucuronosyl and N-acetyl-alpha-D-glucosaminyl residues by exostosins. These enzymes generally possess two glycosyltransferase domains (GT47 and GT64)-each thought to add one type of monosaccharide unit to the backbone. Although previous structures of murine exostosin-like 2 (EXTL2) provide insight into the GT64 domain, the rest of the bi-domain architecture is yet to be characterised; hence, how the two domains co-operate is unknown. Here, we report the structure of human exostosin-like 3 (EXTL3) in apo and UDP-bound forms. We explain the ineffectiveness of EXTL3's GT47 domain to transfer beta-D-glucuronosyl units, and we observe that, in general, the bi-domain architecture would preclude a processive mechanism of backbone extension. We therefore propose that heparan sulfate backbone polymerisation occurs by a simple dissociative mechanism.
The structure of EXTL3 helps to explain the different roles of bi-domain exostosins in heparan sulfate synthesis.,Wilson LFL, Dendooven T, Hardwick SW, Echevarria-Poza A, Tryfona T, Krogh KBRM, Chirgadze DY, Luisi BF, Logan DT, Mani K, Dupree P Nat Commun. 2022 Jun 8;13(1):3314. doi: 10.1038/s41467-022-31048-2. PMID:35676258<ref>PMID:35676258</ref>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 7au2" style="background-color:#fffaf0;"></div>
== References ==
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>
[[Category: Glucuronosyl-galactosyl-proteoglycan 4-alpha-N- acetylglucosaminyltransferase]]
[[Category: Large Structures]]
[[Category: Large Structures]]
[[Category: Chirgadze DY]]
[[Category: Chirgadze, D Y]]
[[Category: Dendooven T]]
[[Category: Dendooven, T]]
[[Category: Dupree P]]
[[Category: Dupree, P]]
[[Category: Hardwick SW]]
[[Category: Hardwick, S W]]
[[Category: Logan DT]]
[[Category: Logan, D T]]
[[Category: Luisi BF]]
[[Category: Luisi, B F]]
[[Category: Mani K]]
[[Category: Mani, K]]
[[Category: Wilson LFL]]
[[Category: Wilson, L F.L]]
[[Category: Glycosyltransferase]]
[[Category: Heparan]]
[[Category: N-acetylglucosaminyltransferase]]
[[Category: Transferase]]

Latest revision as of 08:14, 15 June 2022

Cryo-EM structure of human exostosin-like 3 (EXTL3)Cryo-EM structure of human exostosin-like 3 (EXTL3)

Structural highlights

7au2 is a 2 chain structure. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:, ,
Activity:Glucuronosyl-galactosyl-proteoglycan 4-alpha-N- acetylglucosaminyltransferase, with EC number 2.4.1.223
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Disease

[EXTL3_HUMAN] Skeletal dysplasia-T-cell immunodeficiency-developmental delay syndrome. The disease is caused by variants affecting the gene represented in this entry.

Function

[EXTL3_HUMAN] Glycosyltransferase which regulates the biosynthesis of heparan sulfate (HS). Important for both skeletal development and hematopoiesis, through the formation of HS proteoglycans (HSPGs) (PubMed:28132690, PubMed:28148688). Required for the function of REG3A in regulating keratinocyte proliferation and differentiation (PubMed:22727489).[1] [2] [3]

Publication Abstract from PubMed

Heparan sulfate is a highly modified O-linked glycan that performs diverse physiological roles in animal tissues. Though quickly modified, it is initially synthesised as a polysaccharide of alternating beta-D-glucuronosyl and N-acetyl-alpha-D-glucosaminyl residues by exostosins. These enzymes generally possess two glycosyltransferase domains (GT47 and GT64)-each thought to add one type of monosaccharide unit to the backbone. Although previous structures of murine exostosin-like 2 (EXTL2) provide insight into the GT64 domain, the rest of the bi-domain architecture is yet to be characterised; hence, how the two domains co-operate is unknown. Here, we report the structure of human exostosin-like 3 (EXTL3) in apo and UDP-bound forms. We explain the ineffectiveness of EXTL3's GT47 domain to transfer beta-D-glucuronosyl units, and we observe that, in general, the bi-domain architecture would preclude a processive mechanism of backbone extension. We therefore propose that heparan sulfate backbone polymerisation occurs by a simple dissociative mechanism.

The structure of EXTL3 helps to explain the different roles of bi-domain exostosins in heparan sulfate synthesis.,Wilson LFL, Dendooven T, Hardwick SW, Echevarria-Poza A, Tryfona T, Krogh KBRM, Chirgadze DY, Luisi BF, Logan DT, Mani K, Dupree P Nat Commun. 2022 Jun 8;13(1):3314. doi: 10.1038/s41467-022-31048-2. PMID:35676258[4]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Lai Y, Li D, Li C, Muehleisen B, Radek KA, Park HJ, Jiang Z, Li Z, Lei H, Quan Y, Zhang T, Wu Y, Kotol P, Morizane S, Hata TR, Iwatsuki K, Tang C, Gallo RL. The antimicrobial protein REG3A regulates keratinocyte proliferation and differentiation after skin injury. Immunity. 2012 Jul 27;37(1):74-84. doi: 10.1016/j.immuni.2012.04.010. Epub 2012, Jun 21. PMID:22727489 doi:http://dx.doi.org/10.1016/j.immuni.2012.04.010
  2. Oud MM, Tuijnenburg P, Hempel M, van Vlies N, Ren Z, Ferdinandusse S, Jansen MH, Santer R, Johannsen J, Bacchelli C, Alders M, Li R, Davies R, Dupuis L, Cale CM, Wanders RJA, Pals ST, Ocaka L, James C, Muller I, Lehmberg K, Strom T, Engels H, Williams HJ, Beales P, Roepman R, Dias P, Brunner HG, Cobben JM, Hall C, Hartley T, Le Quesne Stabej P, Mendoza-Londono R, Davies EG, de Sousa SB, Lessel D, Arts HH, Kuijpers TW. Mutations in EXTL3 Cause Neuro-immuno-skeletal Dysplasia Syndrome. Am J Hum Genet. 2017 Feb 2;100(2):281-296. doi: 10.1016/j.ajhg.2017.01.013. Epub , 2017 Jan 26. PMID:28132690 doi:http://dx.doi.org/10.1016/j.ajhg.2017.01.013
  3. Volpi S, Yamazaki Y, Brauer PM, van Rooijen E, Hayashida A, Slavotinek A, Sun Kuehn H, Di Rocco M, Rivolta C, Bortolomai I, Du L, Felgentreff K, Ott de Bruin L, Hayashida K, Freedman G, Marcovecchio GE, Capuder K, Rath P, Luche N, Hagedorn EJ, Buoncompagni A, Royer-Bertrand B, Giliani S, Poliani PL, Imberti L, Dobbs K, Poulain FE, Martini A, Manis J, Linhardt RJ, Bosticardo M, Rosenzweig SD, Lee H, Puck JM, Zuniga-Pflucker JC, Zon L, Park PW, Superti-Furga A, Notarangelo LD. EXTL3 mutations cause skeletal dysplasia, immune deficiency, and developmental delay. J Exp Med. 2017 Mar 6;214(3):623-637. doi: 10.1084/jem.20161525. Epub 2017 Feb 1. PMID:28148688 doi:http://dx.doi.org/10.1084/jem.20161525
  4. Wilson LFL, Dendooven T, Hardwick SW, Echevarria-Poza A, Tryfona T, Krogh KBRM, Chirgadze DY, Luisi BF, Logan DT, Mani K, Dupree P. The structure of EXTL3 helps to explain the different roles of bi-domain exostosins in heparan sulfate synthesis. Nat Commun. 2022 Jun 8;13(1):3314. doi: 10.1038/s41467-022-31048-2. PMID:35676258 doi:http://dx.doi.org/10.1038/s41467-022-31048-2

7au2, resolution 2.43Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA