7f8t: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
Line 3: Line 3:
<StructureSection load='7f8t' size='340' side='right'caption='[[7f8t]], [[Resolution|resolution]] 1.50&Aring;' scene=''>
<StructureSection load='7f8t' size='340' side='right'caption='[[7f8t]], [[Resolution|resolution]] 1.50&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[7f8t]] is a 1 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7F8T OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7F8T FirstGlance]. <br>
<table><tr><td colspan='2'>[[7f8t]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Methanosarcina_mazei Methanosarcina mazei]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7F8T OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7F8T FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=FAD:FLAVIN-ADENINE+DINUCLEOTIDE'>FAD</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.5&#8491;</td></tr>
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[2xry|2xry]]</div></td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=FAD:FLAVIN-ADENINE+DINUCLEOTIDE'>FAD</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7f8t FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7f8t OCA], [https://pdbe.org/7f8t PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7f8t RCSB], [https://www.ebi.ac.uk/pdbsum/7f8t PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7f8t ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7f8t FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7f8t OCA], [https://pdbe.org/7f8t PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7f8t RCSB], [https://www.ebi.ac.uk/pdbsum/7f8t PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7f8t ProSAT]</span></td></tr>
</table>
</table>
== Function ==
[https://www.uniprot.org/uniprot/Q8PYK9_METMA Q8PYK9_METMA]
<div style="background-color:#fffaf0;">
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
== Publication Abstract from PubMed ==
Class II photolyases ubiquitously occur in plants, animals, prokaryotes and some viruses. Like the distantly related microbial class I photolyases, these enzymes repair UV-induced cyclobutane pyrimidine dimer (CPD) lesions within duplex DNA using blue/near-UV light. Methanosarcina mazei Mm0852 is a class II photolyase of the archaeal order of Methanosarcinales, and is closely related to plant and metazoan counterparts. Mm0852 catalyses light-driven DNA repair and photoreduction, but in contrast to class I enzymes lacks a high degree of binding discrimination between UV-damaged and intact duplex DNA. We solved crystal structures of Mm0852, the first one for a class II photolyase, alone and in complex with CPD lesion-containing duplex DNA. The lesion-binding mode differs from other photolyases by a larger DNA-binding site, and an unrepaired CPD lesion is found flipped into the active site and recognized by a cluster of five water molecules next to the bound 3'-thymine base. Different from other members of the photolyase-cryptochrome family, class II photolyases appear to utilize an unusual, conserved tryptophane dyad as electron transfer pathway to the catalytic FAD cofactor.
Flavin coenzymes are universally found in biological redox reactions. DNA photolyases, with their flavin chromophore (FAD), utilize blue light for DNA repair and photoreduction. The latter process involves two single-electron transfers to FAD with an intermittent protonation step to prime the enzyme active for DNA repair. Here we use time-resolved serial femtosecond X-ray crystallography to describe how light-driven electron transfers trigger subsequent nanosecond-to-microsecond entanglement between FAD and its Asn/Arg-Asp redox sensor triad. We found that this key feature within the photolyase-cryptochrome family regulates FAD re-hybridization and protonation. After first electron transfer, the FAD(*-) isoalloxazine ring twists strongly when the arginine closes in to stabilize the negative charge. Subsequent breakage of the arginine-aspartate salt bridge allows proton transfer from arginine to FAD(*-). Our molecular videos demonstrate how the protein environment of redox cofactors organizes multiple electron/proton transfer events in an ordered fashion, which could be applicable to other redox systems such as photosynthesis.


Crystal structures of an archaeal class II DNA photolyase and its complex with UV-damaged duplex DNA.,Kiontke S, Geisselbrecht Y, Pokorny R, Carell T, Batschauer A, Essen LO EMBO J. 2011 Sep 2. doi: 10.1038/emboj.2011.313. PMID:21892138<ref>PMID:21892138</ref>
Serial crystallography captures dynamic control of sequential electron and proton transfer events in a flavoenzyme.,Maestre-Reyna M, Yang CH, Nango E, Huang WC, Ngurah Putu EPG, Wu WJ, Wang PH, Franz-Badur S, Saft M, Emmerich HJ, Wu HY, Lee CC, Huang KF, Chang YK, Liao JH, Weng JH, Gad W, Chang CW, Pang AH, Sugahara M, Owada S, Hosokawa Y, Joti Y, Yamashita A, Tanaka R, Tanaka T, Luo F, Tono K, Hsu KC, Kiontke S, Schapiro I, Spadaccini R, Royant A, Yamamoto J, Iwata S, Essen LO, Bessho Y, Tsai MD Nat Chem. 2022 Apr 7. pii: 10.1038/s41557-022-00922-3. doi:, 10.1038/s41557-022-00922-3. PMID:35393554<ref>PMID:35393554</ref>


From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
Line 22: Line 24:
</StructureSection>
</StructureSection>
[[Category: Large Structures]]
[[Category: Large Structures]]
[[Category: Bessho, Y]]
[[Category: Methanosarcina mazei]]
[[Category: Chang, Y K]]
[[Category: Bessho Y]]
[[Category: Essen, L O]]
[[Category: Chang Y-K]]
[[Category: Franz-Badur, S]]
[[Category: Essen L-O]]
[[Category: Gusti-Ngurah-Putu, E P]]
[[Category: Franz-Badur S]]
[[Category: Huang, K F]]
[[Category: Gusti-Ngurah-Putu E-P]]
[[Category: Huang, W C]]
[[Category: Huang K-F]]
[[Category: Iwata, S]]
[[Category: Huang WC]]
[[Category: Joti, Y]]
[[Category: Iwata S]]
[[Category: Kiontke, S]]
[[Category: Joti Y]]
[[Category: Lee, C C]]
[[Category: Kiontke S]]
[[Category: Liao, J H]]
[[Category: Lee C-C]]
[[Category: Maestre-Reyna, M]]
[[Category: Liao J-H]]
[[Category: Nango, E]]
[[Category: Maestre-Reyna M]]
[[Category: Owada, S]]
[[Category: Nango E]]
[[Category: Sugahara, M]]
[[Category: Owada S]]
[[Category: Tanaka, R]]
[[Category: Sugahara M]]
[[Category: Tono, K]]
[[Category: Tanaka R]]
[[Category: Tsai, M D]]
[[Category: Tono K]]
[[Category: Wang, P H]]
[[Category: Tsai M-D]]
[[Category: Weng, J H]]
[[Category: Wang P-H]]
[[Category: Wu, H Y]]
[[Category: Weng J-H]]
[[Category: Wu, W J]]
[[Category: Wu H-Y]]
[[Category: Yamamoto, J]]
[[Category: Wu W-J]]
[[Category: Yang, C H]]
[[Category: Yamamoto J]]
[[Category: Dna binding protein]]
[[Category: Yang C-H]]
[[Category: Lyase]]
[[Category: Oxidoreductase]]
[[Category: Photoreduction]]
[[Category: Redox state]]

Latest revision as of 20:11, 29 November 2023

Re-refinement of the 2XRY X-ray structure of archaeal class II CPD photolyase from Methanosarcina mazeiRe-refinement of the 2XRY X-ray structure of archaeal class II CPD photolyase from Methanosarcina mazei

Structural highlights

7f8t is a 1 chain structure with sequence from Methanosarcina mazei. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.5Å
Ligands:, ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

Q8PYK9_METMA

Publication Abstract from PubMed

Flavin coenzymes are universally found in biological redox reactions. DNA photolyases, with their flavin chromophore (FAD), utilize blue light for DNA repair and photoreduction. The latter process involves two single-electron transfers to FAD with an intermittent protonation step to prime the enzyme active for DNA repair. Here we use time-resolved serial femtosecond X-ray crystallography to describe how light-driven electron transfers trigger subsequent nanosecond-to-microsecond entanglement between FAD and its Asn/Arg-Asp redox sensor triad. We found that this key feature within the photolyase-cryptochrome family regulates FAD re-hybridization and protonation. After first electron transfer, the FAD(*-) isoalloxazine ring twists strongly when the arginine closes in to stabilize the negative charge. Subsequent breakage of the arginine-aspartate salt bridge allows proton transfer from arginine to FAD(*-). Our molecular videos demonstrate how the protein environment of redox cofactors organizes multiple electron/proton transfer events in an ordered fashion, which could be applicable to other redox systems such as photosynthesis.

Serial crystallography captures dynamic control of sequential electron and proton transfer events in a flavoenzyme.,Maestre-Reyna M, Yang CH, Nango E, Huang WC, Ngurah Putu EPG, Wu WJ, Wang PH, Franz-Badur S, Saft M, Emmerich HJ, Wu HY, Lee CC, Huang KF, Chang YK, Liao JH, Weng JH, Gad W, Chang CW, Pang AH, Sugahara M, Owada S, Hosokawa Y, Joti Y, Yamashita A, Tanaka R, Tanaka T, Luo F, Tono K, Hsu KC, Kiontke S, Schapiro I, Spadaccini R, Royant A, Yamamoto J, Iwata S, Essen LO, Bessho Y, Tsai MD Nat Chem. 2022 Apr 7. pii: 10.1038/s41557-022-00922-3. doi:, 10.1038/s41557-022-00922-3. PMID:35393554[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Maestre-Reyna M, Yang CH, Nango E, Huang WC, Ngurah Putu EPG, Wu WJ, Wang PH, Franz-Badur S, Saft M, Emmerich HJ, Wu HY, Lee CC, Huang KF, Chang YK, Liao JH, Weng JH, Gad W, Chang CW, Pang AH, Sugahara M, Owada S, Hosokawa Y, Joti Y, Yamashita A, Tanaka R, Tanaka T, Luo F, Tono K, Hsu KC, Kiontke S, Schapiro I, Spadaccini R, Royant A, Yamamoto J, Iwata S, Essen LO, Bessho Y, Tsai MD. Serial crystallography captures dynamic control of sequential electron and proton transfer events in a flavoenzyme. Nat Chem. 2022 Apr 7. pii: 10.1038/s41557-022-00922-3. doi:, 10.1038/s41557-022-00922-3. PMID:35393554 doi:http://dx.doi.org/10.1038/s41557-022-00922-3

7f8t, resolution 1.50Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA