Methionine synthase: Difference between revisions
No edit summary |
No edit summary |
||
Line 13: | Line 13: | ||
Methionine synthase (MetH) is a B12-dependent enzyme that methylates homocysteine to regenerate methionine. The change from homocysteine to methionine is a methyl group. This reaction is regulated by methyltetrahydrofolate (a product from MTFHR) as a methyl donor and B12 as the methyl carrier. | Methionine synthase (MetH) is a B12-dependent enzyme that methylates homocysteine to regenerate methionine. The change from homocysteine to methionine is a methyl group. This reaction is regulated by methyltetrahydrofolate (a product from MTFHR) as a methyl donor and B12 as the methyl carrier. | ||
The <scene name='90/907471/Superposition_1/2'>full structure of MetH</scene> has yet to be determined but we understand it contains 4 domains | The <scene name='90/907471/Superposition_1/2'>full structure of MetH</scene> has yet to be determined but we understand it contains 4 domains of B12 cobalamin (in pink), methyltetrahydrofolate (blue), homocysteine (yellow), and SAH (as part of the SAM cycle; in red). Each domain with an important function required for catalytic and reactivation cycles. | ||
</StructureSection> | </StructureSection> |