3b6f: Difference between revisions
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
<StructureSection load='3b6f' size='340' side='right'caption='[[3b6f]], [[Resolution|resolution]] 3.45Å' scene=''> | <StructureSection load='3b6f' size='340' side='right'caption='[[3b6f]], [[Resolution|resolution]] 3.45Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[3b6f]] is a 10 chain structure with sequence from [https://en.wikipedia.org/wiki/ ] and [https://en.wikipedia.org/wiki/ | <table><tr><td colspan='2'>[[3b6f]] is a 10 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens] and [https://en.wikipedia.org/wiki/Xenopus_laevis Xenopus laevis]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3B6F OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3B6F FirstGlance]. <br> | ||
</td></tr><tr id=' | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 3.45Å</td></tr> | ||
<tr id=' | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=MN:MANGANESE+(II)+ION'>MN</scene></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3b6f FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3b6f OCA], [https://pdbe.org/3b6f PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3b6f RCSB], [https://www.ebi.ac.uk/pdbsum/3b6f PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3b6f ProSAT]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3b6f FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3b6f OCA], [https://pdbe.org/3b6f PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3b6f RCSB], [https://www.ebi.ac.uk/pdbsum/3b6f PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3b6f ProSAT]</span></td></tr> | ||
</table> | </table> | ||
== Function == | == Function == | ||
[https://www.uniprot.org/uniprot/H32_XENLA H32_XENLA] Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. | |||
== Evolutionary Conservation == | == Evolutionary Conservation == | ||
[[Image:Consurf_key_small.gif|200px|right]] | [[Image:Consurf_key_small.gif|200px|right]] | ||
Line 37: | Line 36: | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
[[Category: | [[Category: Homo sapiens]] | ||
[[Category: Large Structures]] | [[Category: Large Structures]] | ||
[[Category: | [[Category: Xenopus laevis]] | ||
[[Category: | [[Category: Davey CA]] | ||
[[Category: | [[Category: Wu B]] | ||
Latest revision as of 17:42, 1 November 2023
Nucleosome core particle treated with cisplatinNucleosome core particle treated with cisplatin
Structural highlights
FunctionH32_XENLA Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedX-ray crystallographic and biochemical investigation of the reaction of cisplatin and oxaliplatin with nucleosome core particle and naked DNA reveals that histone octamer association can modulate DNA platination. Adduct formation also occurs at specific histone methionine residues, which could serve as a nuclear platinum reservoir influencing adduct transfer to DNA. Our findings suggest that the nucleosome center may provide a favorable target for the design of improved platinum anticancer drugs. Site selectivity of platinum anticancer therapeutics.,Wu B, Droge P, Davey CA Nat Chem Biol. 2008 Feb;4(2):110-2. Epub 2007 Dec 23. PMID:18157123[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|