3hzi: Difference between revisions
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
<StructureSection load='3hzi' size='340' side='right'caption='[[3hzi]], [[Resolution|resolution]] 2.98Å' scene=''> | <StructureSection load='3hzi' size='340' side='right'caption='[[3hzi]], [[Resolution|resolution]] 2.98Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[3hzi]] is a 3 chain structure with sequence from [https://en.wikipedia.org/wiki/ | <table><tr><td colspan='2'>[[3hzi]] is a 3 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli_K-12 Escherichia coli K-12]. This structure supersedes the now removed PDB entry [http://oca.weizmann.ac.il/oca-bin/send-pdb?obs=1&id=3dnw 3dnw]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3HZI OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3HZI FirstGlance]. <br> | ||
</td></tr><tr id=' | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.98Å</td></tr> | ||
<tr id=' | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ATP:ADENOSINE-5-TRIPHOSPHATE'>ATP</scene>, <scene name='pdbligand=MSE:SELENOMETHIONINE'>MSE</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3hzi FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3hzi OCA], [https://pdbe.org/3hzi PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3hzi RCSB], [https://www.ebi.ac.uk/pdbsum/3hzi PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3hzi ProSAT]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3hzi FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3hzi OCA], [https://pdbe.org/3hzi PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3hzi RCSB], [https://www.ebi.ac.uk/pdbsum/3hzi PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3hzi ProSAT]</span></td></tr> | ||
</table> | </table> | ||
== Function == | == Function == | ||
[https://www.uniprot.org/uniprot/HIPA_ECOLI HIPA_ECOLI] Toxic component of a toxin-antitoxin (TA) module. Autophosphorylates (Ser-150) and phosphorylates EF-Tu in vitro (on 'Thr-383'), may act on other proteins as well. The hipA7 mutation leads to increased generation of persister cells, cells that survive antibiotic treatment probably by entering into a dormant state. Wild-type cells produce persisters at a frequency of 10-6 to 10-5 whereas mutant hipA7 cells produce persisters at a frequency of 10-2. Generation of persister cells requires (p)ppGpp as cells lacking relA or relA/spoT generate fewer or no persister cells respectively compared to hipA7. Low level expression of HipA causes cell filamentation and depending on the protein level is toxic enough to reduce cell growth or even kill cells. Expression of wild-type HipA also leads to high antibiotic tolerance of the survivor cells. The toxic effect of HipA is neutralized by its cognate antitoxin HipB. With HipB acts as a corepressor for transcription of the hipBA promoter.<ref>PMID:17041039</ref> <ref>PMID:6348026</ref> <ref>PMID:8021189</ref> <ref>PMID:14622409</ref> <ref>PMID:19150849</ref> | |||
== Evolutionary Conservation == | == Evolutionary Conservation == | ||
[[Image:Consurf_key_small.gif|200px|right]] | [[Image:Consurf_key_small.gif|200px|right]] | ||
Line 38: | Line 36: | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
[[Category: | [[Category: Escherichia coli K-12]] | ||
[[Category: Large Structures]] | [[Category: Large Structures]] | ||
[[Category: Schumacher | [[Category: Schumacher MA]] | ||
Latest revision as of 10:34, 6 September 2023
Structure of mdt proteinStructure of mdt protein
Structural highlights
FunctionHIPA_ECOLI Toxic component of a toxin-antitoxin (TA) module. Autophosphorylates (Ser-150) and phosphorylates EF-Tu in vitro (on 'Thr-383'), may act on other proteins as well. The hipA7 mutation leads to increased generation of persister cells, cells that survive antibiotic treatment probably by entering into a dormant state. Wild-type cells produce persisters at a frequency of 10-6 to 10-5 whereas mutant hipA7 cells produce persisters at a frequency of 10-2. Generation of persister cells requires (p)ppGpp as cells lacking relA or relA/spoT generate fewer or no persister cells respectively compared to hipA7. Low level expression of HipA causes cell filamentation and depending on the protein level is toxic enough to reduce cell growth or even kill cells. Expression of wild-type HipA also leads to high antibiotic tolerance of the survivor cells. The toxic effect of HipA is neutralized by its cognate antitoxin HipB. With HipB acts as a corepressor for transcription of the hipBA promoter.[1] [2] [3] [4] [5] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedBacterial multidrug tolerance is largely responsible for the inability of antibiotics to eradicate infections and is caused by a small population of dormant bacteria called persisters. HipA is a critical Escherichia coli persistence factor that is normally neutralized by HipB, a transcription repressor, which also regulates hipBA expression. Here, we report multiple structures of HipA and a HipA-HipB-DNA complex. HipA has a eukaryotic serine/threonine kinase-like fold and can phosphorylate the translation factor EF-Tu, suggesting a persistence mechanism via cell stasis. The HipA-HipB-DNA structure reveals the HipB-operator binding mechanism, approximately 70 degrees DNA bending, and unexpected HipA-DNA contacts. Dimeric HipB interacts with two HipA molecules to inhibit its kinase activity through sequestration and conformational inactivation. Combined, these studies suggest mechanisms for HipA-mediated persistence and its neutralization by HipB. Molecular mechanisms of HipA-mediated multidrug tolerance and its neutralization by HipB.,Schumacher MA, Piro KM, Xu W, Hansen S, Lewis K, Brennan RG Science. 2009 Jan 16;323(5912):396-401. PMID:19150849[6] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|