7b8e: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
==Torpedo californica acetylcholinesterase complexed with Ca+2== | ==Torpedo californica acetylcholinesterase complexed with Ca+2== | ||
<StructureSection load='7b8e' size='340' side='right'caption='[[7b8e]]' scene=''> | <StructureSection load='7b8e' size='340' side='right'caption='[[7b8e]], [[Resolution|resolution]] 2.23Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7B8E OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7B8E FirstGlance]. <br> | <table><tr><td colspan='2'>[[7b8e]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Tetronarce_californica Tetronarce californica]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7B8E OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7B8E FirstGlance]. <br> | ||
</td></tr><tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7b8e FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7b8e OCA], [https://pdbe.org/7b8e PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7b8e RCSB], [https://www.ebi.ac.uk/pdbsum/7b8e PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7b8e ProSAT]</span></td></tr> | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=EDO:1,2-ETHANEDIOL'>EDO</scene>, <scene name='pdbligand=FWN:2-[2-(2-ethoxyethoxy)ethoxy]ethanol'>FWN</scene>, <scene name='pdbligand=NAG:N-ACETYL-D-GLUCOSAMINE'>NAG</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene>, <scene name='pdbligand=FUC:ALPHA-L-FUCOSE'>FUC</scene></td></tr> | ||
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[https://en.wikipedia.org/wiki/Acetylcholinesterase Acetylcholinesterase], with EC number [https://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.1.1.7 3.1.1.7] </span></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7b8e FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7b8e OCA], [https://pdbe.org/7b8e PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7b8e RCSB], [https://www.ebi.ac.uk/pdbsum/7b8e PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7b8e ProSAT]</span></td></tr> | |||
</table> | </table> | ||
== Function == | |||
[[https://www.uniprot.org/uniprot/ACES_TETCF ACES_TETCF]] Terminates signal transduction at the neuromuscular junction by rapid hydrolysis of the acetylcholine released into the synaptic cleft. May be involved in cell-cell interactions. | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
Stabilization of Torpedo californica acetylcholinesterase by the divalent cations Ca(+2) , Mg(+2) and Mn(+2) was investigated. All three substantially protect the enzyme from thermal inactivation. Electron paramagnetic resonance revealed one high-affinity binding site for Mn(+2) and several much weaker sites. Differential scanning calorimetry showed a single irreversible thermal transition. All three cations raise both the temperature of the transition and the activation energy, with the transition becoming more cooperative. The crystal structures of the Ca(+2) and Mg(+2) complexes with Torpedo acetylcholinesterase were solved. A principal binding site was identified. In both cases, it consists of four aspartates (a 4D motif), within which the divalent ion is embedded, together with several waters molecules. It makes direct contact with two of the aspartates, and indirect contact, via waters, with the other two. The 4D motif has been identified in 31 acetylcholinesterase sequences and 28 butyrylcholinesterase sequences. Zebrafish acetylcholinesterase also contains the 4D motif; it, too, is stabilized by divalent metal ions. The ASSAM server retrieved 200 other proteins that display the 4D motif, in many of which it is occupied by a divalent cation. It is a very versatile motif, since, even though tightly conserved in terms of rmsd values, it can contain from one to as many as three divalent metal ions, together with a variable number of waters. This novel motif, which binds primarily divalent metal ions, is shared by a broad repertoire of proteins. This article is protected by copyright. All rights reserved. | |||
Torpedo californica acetylcholinesterase is stabilized by binding of a divalent metal ion to a novel and versatile 4D motif.,Silman I, Shnyrov VL, Ashani Y, Roth E, Nicolas A, Sussman JL, Weiner L Protein Sci. 2021 Mar 8. doi: 10.1002/pro.4061. PMID:33686648<ref>PMID:33686648</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 7b8e" style="background-color:#fffaf0;"></div> | |||
== References == | |||
<references/> | |||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
[[Category: Acetylcholinesterase]] | |||
[[Category: Large Structures]] | [[Category: Large Structures]] | ||
[[Category: Ashani Y]] | [[Category: Tetronarce californica]] | ||
[[Category: Nicolas A]] | [[Category: Ashani, Y]] | ||
[[Category: Roth E]] | [[Category: Nicolas, A]] | ||
[[Category: Shnyrov | [[Category: Roth, E]] | ||
[[Category: Silman I]] | [[Category: Shnyrov, V L]] | ||
[[Category: Sussman | [[Category: Silman, I]] | ||
[[Category: Sussman, J L]] | |||
[[Category: 1.1 7]] | |||
[[Category: 4d motif]] | |||
[[Category: Assam]] | |||
[[Category: Differential scanning calorimetry]] | |||
[[Category: Divalent metal ion]] | |||
[[Category: Electron paramagnetic resonance]] | |||
[[Category: Hydrolase]] | |||
[[Category: Thermal inactivation]] | |||
[[Category: Torpedo]] |
Revision as of 09:52, 24 March 2021
Torpedo californica acetylcholinesterase complexed with Ca+2Torpedo californica acetylcholinesterase complexed with Ca+2
Structural highlights
Function[ACES_TETCF] Terminates signal transduction at the neuromuscular junction by rapid hydrolysis of the acetylcholine released into the synaptic cleft. May be involved in cell-cell interactions. Publication Abstract from PubMedStabilization of Torpedo californica acetylcholinesterase by the divalent cations Ca(+2) , Mg(+2) and Mn(+2) was investigated. All three substantially protect the enzyme from thermal inactivation. Electron paramagnetic resonance revealed one high-affinity binding site for Mn(+2) and several much weaker sites. Differential scanning calorimetry showed a single irreversible thermal transition. All three cations raise both the temperature of the transition and the activation energy, with the transition becoming more cooperative. The crystal structures of the Ca(+2) and Mg(+2) complexes with Torpedo acetylcholinesterase were solved. A principal binding site was identified. In both cases, it consists of four aspartates (a 4D motif), within which the divalent ion is embedded, together with several waters molecules. It makes direct contact with two of the aspartates, and indirect contact, via waters, with the other two. The 4D motif has been identified in 31 acetylcholinesterase sequences and 28 butyrylcholinesterase sequences. Zebrafish acetylcholinesterase also contains the 4D motif; it, too, is stabilized by divalent metal ions. The ASSAM server retrieved 200 other proteins that display the 4D motif, in many of which it is occupied by a divalent cation. It is a very versatile motif, since, even though tightly conserved in terms of rmsd values, it can contain from one to as many as three divalent metal ions, together with a variable number of waters. This novel motif, which binds primarily divalent metal ions, is shared by a broad repertoire of proteins. This article is protected by copyright. All rights reserved. Torpedo californica acetylcholinesterase is stabilized by binding of a divalent metal ion to a novel and versatile 4D motif.,Silman I, Shnyrov VL, Ashani Y, Roth E, Nicolas A, Sussman JL, Weiner L Protein Sci. 2021 Mar 8. doi: 10.1002/pro.4061. PMID:33686648[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|