|
|
Line 3: |
Line 3: |
| <StructureSection load='5y39' size='340' side='right'caption='[[5y39]], [[Resolution|resolution]] 2.65Å' scene=''> | | <StructureSection load='5y39' size='340' side='right'caption='[[5y39]], [[Resolution|resolution]] 2.65Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
| <table><tr><td colspan='2'>[[5y39]] is a 10 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5Y39 OCA]. For a <b>guided tour on the structure components</b> use [http://proteopedia.org/fgij/fg.htm?mol=5Y39 FirstGlance]. <br> | | <table><tr><td colspan='2'>[[5y39]] is a 10 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5Y39 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=5Y39 FirstGlance]. <br> |
| </td></tr><tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[5y38|5y38]]</td></tr> | | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.65Å</td></tr> |
| <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://proteopedia.org/fgij/fg.htm?mol=5y39 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5y39 OCA], [http://pdbe.org/5y39 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5y39 RCSB], [http://www.ebi.ac.uk/pdbsum/5y39 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5y39 ProSAT]</span></td></tr> | | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=5y39 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5y39 OCA], [https://pdbe.org/5y39 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=5y39 RCSB], [https://www.ebi.ac.uk/pdbsum/5y39 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=5y39 ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Disease ==
| |
| [[http://www.uniprot.org/uniprot/LTOR2_HUMAN LTOR2_HUMAN]] Primary immunodeficiency syndrome due to p14 deficiency. The disease is caused by mutations affecting the gene represented in this entry.
| |
| == Function == | | == Function == |
| [[http://www.uniprot.org/uniprot/LTOR4_HUMAN LTOR4_HUMAN]] As part of the Ragulator complex it is involved in amino acid sensing and activation of mTORC1, a signaling complex promoting cell growth in response to growth factors, energy levels, and amino acids. Activated by amino acids through a mechanism involving the lysosomal V-ATPase, the Ragulator functions as a guanine nucleotide exchange factor activating the small GTPases Rag. Activated Ragulator and Rag GTPases function as a scaffold recruiting mTORC1 to lysosomes where it is in turn activated.<ref>PMID:22980980</ref> [[http://www.uniprot.org/uniprot/LTOR1_HUMAN LTOR1_HUMAN]] As part of the Ragulator complex it is involved in amino acid sensing and activation of mTORC1, a signaling complex promoting cell growth in response to growth factors, energy levels, and amino acids. Activated by amino acids through a mechanism involving the lysosomal V-ATPase, the Ragulator functions as a guanine nucleotide exchange factor activating the small GTPases Rag. Activated Ragulator and Rag GTPases function as a scaffold recruiting mTORC1 to lysosomes where it is in turn activated. LAMTOR1 is directly responsible for anchoring the Ragulator complex to membranes. Also required for late endosomes/lysosomes biogenesis it may regulate both the recycling of receptors through endosomes and the MAPK signaling pathway through recruitment of some of its components to late endosomes. May be involved in cholesterol homeostasis regulating LDL uptake and cholesterol release from late endosomes/lysosomes. May also play a role in RHOA activation.<ref>PMID:19654316</ref> <ref>PMID:20381137</ref> <ref>PMID:20544018</ref> <ref>PMID:22980980</ref> [[http://www.uniprot.org/uniprot/LTOR3_HUMAN LTOR3_HUMAN]] As part of the Ragulator complex it is involved in amino acid sensing and activation of mTORC1, a signaling complex promoting cell growth in response to growth factors, energy levels, and amino acids. Activated by amino acids through a mechanism involving the lysosomal V-ATPase, the Ragulator functions as a guanine nucleotide exchange factor activating the small GTPases Rag. Activated Ragulator and Rag GTPases function as a scaffold recruiting mTORC1 to lysosomes where it is in turn activated. Adapter protein that enhances the efficiency of the MAP kinase cascade facilitating the activation of MAPK2.<ref>PMID:20381137</ref> <ref>PMID:22980980</ref> [[http://www.uniprot.org/uniprot/LTOR2_HUMAN LTOR2_HUMAN]] As part of the Ragulator complex it is involved in amino acid sensing and activation of mTORC1, a signaling complex promoting cell growth in response to growth factors, energy levels, and amino acids. Activated by amino acids through a mechanism involving the lysosomal V-ATPase, the Ragulator functions as a guanine nucleotide exchange factor activating the small GTPases Rag. Activated Ragulator and Rag GTPases function as a scaffold recruiting mTORC1 to lysosomes where it is in turn activated. Adapter protein that enhances the efficiency of the MAP kinase cascade facilitating the activation of MAPK2.<ref>PMID:20381137</ref> <ref>PMID:22980980</ref> [[http://www.uniprot.org/uniprot/LTOR5_HUMAN LTOR5_HUMAN]] As part of the Ragulator complex it is involved in amino acid sensing and activation of mTORC1, a signaling complex promoting cell growth in response to growth factors, energy levels, and amino acids. Activated by amino acids through a mechanism involving the lysosomal V-ATPase, the Ragulator functions as a guanine nucleotide exchange factor activating the small GTPases Rag. Activated Ragulator and Rag GTPases function as a scaffold recruiting mTORC1 to lysosomes where it is in turn activated. When complexed to BIRC5, interferes with apoptosome assembly, preventing recruitment of pro-caspase-9 to oligomerized APAF1, thereby selectively suppressing apoptosis initiated via the mitochondrial/cytochrome c pathway. Down-regulates hepatitis B virus (HBV) replication.<ref>PMID:12773388</ref> <ref>PMID:22980980</ref> | | [https://www.uniprot.org/uniprot/LTOR1_HUMAN LTOR1_HUMAN] As part of the Ragulator complex it is involved in amino acid sensing and activation of mTORC1, a signaling complex promoting cell growth in response to growth factors, energy levels, and amino acids. Activated by amino acids through a mechanism involving the lysosomal V-ATPase, the Ragulator functions as a guanine nucleotide exchange factor activating the small GTPases Rag. Activated Ragulator and Rag GTPases function as a scaffold recruiting mTORC1 to lysosomes where it is in turn activated. LAMTOR1 is directly responsible for anchoring the Ragulator complex to membranes. Also required for late endosomes/lysosomes biogenesis it may regulate both the recycling of receptors through endosomes and the MAPK signaling pathway through recruitment of some of its components to late endosomes. May be involved in cholesterol homeostasis regulating LDL uptake and cholesterol release from late endosomes/lysosomes. May also play a role in RHOA activation.<ref>PMID:19654316</ref> <ref>PMID:20381137</ref> <ref>PMID:20544018</ref> <ref>PMID:22980980</ref> |
| <div style="background-color:#fffaf0;">
| |
| == Publication Abstract from PubMed ==
| |
| Amino acid-dependent activation of the mechanistic target of rapamycin complex 1 (mTORC1) is mediated by Rag GTPases, which are recruited to the lysosome by the Ragulator complex consisting of p18, MP1, p14, HBXIP and C7orf59; however, the molecular mechanism is elusive. Here, we report the crystal structure of Ragulator, in which p18 wraps around the MP1-p14 and C7orf59-HBXIP heterodimers and the interactions of p18 with MP1, C7orf59, and HBXIP are essential for the assembly of Ragulator. There are two binding sites for the Roadblock domains of Rag GTPases: helix alpha1 of p18 and the two helices side of MP1-p14. The interaction of Ragulator with Rag GTPases is required for their cellular co-localization and can be competitively inhibited by C17orf59. Collectively, our data indicate that Ragulator functions as a scaffold to recruit Rag GTPases to lysosomal membrane in mTORC1 signaling.
| |
| | |
| Structural basis for Ragulator functioning as a scaffold in membrane-anchoring of Rag GTPases and mTORC1.,Zhang T, Wang R, Wang Z, Wang X, Wang F, Ding J Nat Commun. 2017 Nov 9;8(1):1394. doi: 10.1038/s41467-017-01567-4. PMID:29123114<ref>PMID:29123114</ref>
| |
| | |
| From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br>
| |
| </div>
| |
| <div class="pdbe-citations 5y39" style="background-color:#fffaf0;"></div>
| |
|
| |
|
| ==See Also== | | ==See Also== |
| *[[Ragulator complex|Ragulator complex]] | | *[[Ragulator complex|Ragulator complex]] |
| | *[[Ragulator complex 3D structures|Ragulator complex 3D structures]] |
| == References == | | == References == |
| <references/> | | <references/> |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
| | [[Category: Homo sapiens]] |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
| [[Category: Ding, J]] | | [[Category: Ding J]] |
| [[Category: Zhang, T]] | | [[Category: Zhang T]] |
| [[Category: Lamtor]]
| |
| [[Category: Ragulator complex]]
| |
| [[Category: Signaling protein]]
| |