5l66: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
Line 3: Line 3:
<StructureSection load='5l66' size='340' side='right'caption='[[5l66]], [[Resolution|resolution]] 2.80&Aring;' scene=''>
<StructureSection load='5l66' size='340' side='right'caption='[[5l66]], [[Resolution|resolution]] 2.80&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[5l66]] is a 28 chain structure with sequence from [http://en.wikipedia.org/wiki/Baker's_yeast Baker's yeast] and [http://en.wikipedia.org/wiki/Lk3_transgenic_mice Lk3 transgenic mice]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5L66 OCA]. For a <b>guided tour on the structure components</b> use [http://proteopedia.org/fgij/fg.htm?mol=5L66 FirstGlance]. <br>
<table><tr><td colspan='2'>[[5l66]] is a 20 chain structure with sequence from [https://en.wikipedia.org/wiki/Mus_musculus Mus musculus] and [https://en.wikipedia.org/wiki/Saccharomyces_cerevisiae_S288C Saccharomyces cerevisiae S288C]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5L66 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=5L66 FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=BO2:N-[(1R)-1-(DIHYDROXYBORYL)-3-METHYLBUTYL]-N-(PYRAZIN-2-YLCARBONYL)-L-PHENYLALANINAMIDE'>BO2</scene>, <scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.8&#8491;</td></tr>
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[5cz4|5cz4]]</td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=BO2:N-[(1R)-1-(DIHYDROXYBORYL)-3-METHYLBUTYL]-N-(PYRAZIN-2-YLCARBONYL)-L-PHENYLALANINAMIDE'>BO2</scene>, <scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr>
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">PRE2, DOA3, PRG1, YPR103W, P8283.10 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=10090 LK3 transgenic mice]), PRE7, PRS3, PTS1, YBL041W, YBL0407 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=10090 LK3 transgenic mice])</td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=5l66 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5l66 OCA], [https://pdbe.org/5l66 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=5l66 RCSB], [https://www.ebi.ac.uk/pdbsum/5l66 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=5l66 ProSAT]</span></td></tr>
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Proteasome_endopeptidase_complex Proteasome endopeptidase complex], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.4.25.1 3.4.25.1] </span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://proteopedia.org/fgij/fg.htm?mol=5l66 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5l66 OCA], [http://pdbe.org/5l66 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5l66 RCSB], [http://www.ebi.ac.uk/pdbsum/5l66 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5l66 ProSAT]</span></td></tr>
</table>
</table>
== Function ==
== Function ==
[[http://www.uniprot.org/uniprot/PSB8_MOUSE PSB8_MOUSE]] The proteasome is a multicatalytic proteinase complex which is characterized by its ability to cleave peptides with Arg, Phe, Tyr, Leu, and Glu adjacent to the leaving group at neutral or slightly basic pH. The proteasome has an ATP-dependent proteolytic activity. This subunit is involved in antigen processing to generate class I binding peptides. May be involved in the inflammatory response pathway. Required for adipocyte differentiation.<ref>PMID:21881205</ref> <ref>PMID:22341445</ref> <ref>PMID:8066463</ref>  [[http://www.uniprot.org/uniprot/PSA1_YEAST PSA1_YEAST]] The proteasome degrades poly-ubiquitinated proteins in the cytoplasm and in the nucleus. It is essential for the regulated turnover of proteins and for the removal of misfolded proteins. The proteasome is a multicatalytic proteinase complex that is characterized by its ability to cleave peptides with Arg, Phe, Tyr, Leu, and Glu adjacent to the leaving group at neutral or slightly basic pH. It has an ATP-dependent proteolytic activity. [[http://www.uniprot.org/uniprot/PSA3_YEAST PSA3_YEAST]] The proteasome degrades poly-ubiquitinated proteins in the cytoplasm and in the nucleus. It is essential for the regulated turnover of proteins and for the removal of misfolded proteins. The proteasome is a multicatalytic proteinase complex that is characterized by its ability to cleave peptides with Arg, Phe, Tyr, Leu, and Glu adjacent to the leaving group at neutral or slightly basic pH. It has an ATP-dependent proteolytic activity. [[http://www.uniprot.org/uniprot/PSA2_YEAST PSA2_YEAST]] The proteasome degrades poly-ubiquitinated proteins in the cytoplasm and in the nucleus. It is essential for the regulated turnover of proteins and for the removal of misfolded proteins. The proteasome is a multicatalytic proteinase complex that is characterized by its ability to cleave peptides with Arg, Phe, Tyr, Leu, and Glu adjacent to the leaving group at neutral or slightly basic pH. It has an ATP-dependent proteolytic activity. [[http://www.uniprot.org/uniprot/PSB7_YEAST PSB7_YEAST]] The proteasome degrades poly-ubiquitinated proteins in the cytoplasm and in the nucleus. It is essential for the regulated turnover of proteins and for the removal of misfolded proteins. The proteasome is a multicatalytic proteinase complex that is characterized by its ability to cleave peptides with Arg, Phe, Tyr, Leu, and Glu adjacent to the leaving group at neutral or slightly basic pH. It has an ATP-dependent proteolytic activity. PRE3 and PRE4 are necessary for the peptidyl-glutamyl-peptide-hydrolyzing activity.<ref>PMID:8381431</ref>  [[http://www.uniprot.org/uniprot/PSA7_YEAST PSA7_YEAST]] The proteasome degrades poly-ubiquitinated proteins in the cytoplasm and in the nucleus. It is essential for the regulated turnover of proteins and for the removal of misfolded proteins. The proteasome is a multicatalytic proteinase complex that is characterized by its ability to cleave peptides with Arg, Phe, Tyr, Leu, and Glu adjacent to the leaving group at neutral or slightly basic pH. It has an ATP-dependent proteolytic activity. [[http://www.uniprot.org/uniprot/PSA4_YEAST PSA4_YEAST]] The proteasome degrades poly-ubiquitinated proteins in the cytoplasm and in the nucleus. It is essential for the regulated turnover of proteins and for the removal of misfolded proteins. The proteasome is a multicatalytic proteinase complex that is characterized by its ability to cleave peptides with Arg, Phe, Tyr, Leu, and Glu adjacent to the leaving group at neutral or slightly basic pH. It has an ATP-dependent proteolytic activity. [[http://www.uniprot.org/uniprot/PSB3_YEAST PSB3_YEAST]] The proteasome degrades poly-ubiquitinated proteins in the cytoplasm and in the nucleus. It is essential for the regulated turnover of proteins and for the removal of misfolded proteins. The proteasome is a multicatalytic proteinase complex that is characterized by its ability to cleave peptides with Arg, Phe, Tyr, Leu, and Glu adjacent to the leaving group at neutral or slightly basic pH. It has an ATP-dependent proteolytic activity. This subunit may participate in the trypsin-like activity of the enzyme complex. [[http://www.uniprot.org/uniprot/PSB6_YEAST PSB6_YEAST]] The proteasome degrades poly-ubiquitinated proteins in the cytoplasm and in the nucleus. It is essential for the regulated turnover of proteins and for the removal of misfolded proteins. The proteasome is a multicatalytic proteinase complex that is characterized by its ability to cleave peptides with Arg, Phe, Tyr, Leu, and Glu adjacent to the leaving group at neutral or slightly basic pH. It has an ATP-dependent proteolytic activity. [[http://www.uniprot.org/uniprot/PSB1_YEAST PSB1_YEAST]] The proteasome degrades poly-ubiquitinated proteins in the cytoplasm and in the nucleus. It is essential for the regulated turnover of proteins and for the removal of misfolded proteins. The proteasome is a multicatalytic proteinase complex that is characterized by its ability to cleave peptides with Arg, Phe, Tyr, Leu, and Glu adjacent to the leaving group at neutral or slightly basic pH. It has an ATP-dependent proteolytic activity. PRE3 and PRE4 are necessary for the peptidyl-glutamyl-peptide-hydrolyzing activity.  This subunit is necessary for the peptidylglutamyl-peptide hydrolyzing activity. [[http://www.uniprot.org/uniprot/PSB2_YEAST PSB2_YEAST]] The proteasome degrades poly-ubiquitinated proteins in the cytoplasm and in the nucleus. It is essential for the regulated turnover of proteins and for the removal of misfolded proteins. The proteasome is a multicatalytic proteinase complex that is characterized by its ability to cleave peptides with Arg, Phe, Tyr, Leu, and Glu adjacent to the leaving group at neutral or slightly basic pH. It has an ATP-dependent proteolytic activity. [[http://www.uniprot.org/uniprot/PSA5_YEAST PSA5_YEAST]] The proteasome degrades poly-ubiquitinated proteins in the cytoplasm and in the nucleus. It is essential for the regulated turnover of proteins and for the removal of misfolded proteins. The proteasome is a multicatalytic proteinase complex that is characterized by its ability to cleave peptides with Arg, Phe, Tyr, Leu, and Glu adjacent to the leaving group at neutral or slightly basic pH. It has an ATP-dependent proteolytic activity. [[http://www.uniprot.org/uniprot/PSB4_YEAST PSB4_YEAST]] The proteasome degrades poly-ubiquitinated proteins in the cytoplasm and in the nucleus. It is essential for the regulated turnover of proteins and for the removal of misfolded proteins. The proteasome is a multicatalytic proteinase complex that is characterized by its ability to cleave peptides with Arg, Phe, Tyr, Leu, and Glu adjacent to the leaving group at neutral or slightly basic pH. It has an ATP-dependent proteolytic activity. This subunit has a chymotrypsin-like activity. [[http://www.uniprot.org/uniprot/PSA6_YEAST PSA6_YEAST]] The proteasome degrades poly-ubiquitinated proteins in the cytoplasm and in the nucleus. It is essential for the regulated turnover of proteins and for the removal of misfolded proteins. The proteasome is a multicatalytic proteinase complex that is characterized by its ability to cleave peptides with Arg, Phe, Tyr, Leu, and Glu adjacent to the leaving group at neutral or slightly basic pH. It has an ATP-dependent proteolytic activity.  
[https://www.uniprot.org/uniprot/PSA3_YEAST PSA3_YEAST] The proteasome degrades poly-ubiquitinated proteins in the cytoplasm and in the nucleus. It is essential for the regulated turnover of proteins and for the removal of misfolded proteins. The proteasome is a multicatalytic proteinase complex that is characterized by its ability to cleave peptides with Arg, Phe, Tyr, Leu, and Glu adjacent to the leaving group at neutral or slightly basic pH. It has an ATP-dependent proteolytic activity.
<div style="background-color:#fffaf0;">
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
== Publication Abstract from PubMed ==
Line 28: Line 26:
__TOC__
__TOC__
</StructureSection>
</StructureSection>
[[Category: Baker's yeast]]
[[Category: Large Structures]]
[[Category: Large Structures]]
[[Category: Lk3 transgenic mice]]
[[Category: Mus musculus]]
[[Category: Proteasome endopeptidase complex]]
[[Category: Saccharomyces cerevisiae S288C]]
[[Category: Groll, M]]
[[Category: Groll M]]
[[Category: Huber, E M]]
[[Category: Huber EM]]
[[Category: Binding analysis]]
[[Category: Hydrolase-hydrolase inhibitor complex]]
[[Category: Inhibitor]]
[[Category: Mutant]]
[[Category: Proteasome]]

Revision as of 19:08, 4 October 2023

Yeast 20S proteasome with mouse beta5i (1-138) and mouse beta6 (97-111; 118-133) in complex with bortezomibYeast 20S proteasome with mouse beta5i (1-138) and mouse beta6 (97-111; 118-133) in complex with bortezomib

Structural highlights

5l66 is a 20 chain structure with sequence from Mus musculus and Saccharomyces cerevisiae S288C. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.8Å
Ligands:, ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

PSA3_YEAST The proteasome degrades poly-ubiquitinated proteins in the cytoplasm and in the nucleus. It is essential for the regulated turnover of proteins and for the removal of misfolded proteins. The proteasome is a multicatalytic proteinase complex that is characterized by its ability to cleave peptides with Arg, Phe, Tyr, Leu, and Glu adjacent to the leaving group at neutral or slightly basic pH. It has an ATP-dependent proteolytic activity.

Publication Abstract from PubMed

Inhibition of the immunoproteasome subunit beta5i alleviates autoimmune diseases in preclinical studies and represents a promising new anti-inflammatory therapy. However, the lack of structural data on the human immunoproteasome still hampers drug design. Here, we systematically determined the potency of seven alpha' beta' epoxyketone inhibitors with varying N-caps and P3-stereochemistry for mouse/human beta5c/beta5i and found pronounced differences in their subunit and species selectivity. Using X-ray crystallography, the compounds were analyzed for their modes of binding to chimeric yeast proteasomes that incorporate key parts of human beta5c, human beta5i or mouse beta5i and the neighboring beta6 subunit. The structural data reveal exceptional conformations for the most selective human beta5i inhibitors and highlight subtle structural differences as the major reason for the observed species selectivity. Altogether, the presented results validate the humanized yeast proteasome as a powerful tool for structure-based development of beta5i inhibitors with potential clinical applications.

A humanized yeast proteasome identifies unique binding modes of inhibitors for the immunosubunit beta5i.,Huber EM, Heinemeyer W, de Bruin G, Overkleeft HS, Groll M EMBO J. 2016 Dec 1;35(23):2602-2613. Epub 2016 Oct 27. PMID:27789522[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Huber EM, Heinemeyer W, de Bruin G, Overkleeft HS, Groll M. A humanized yeast proteasome identifies unique binding modes of inhibitors for the immunosubunit beta5i. EMBO J. 2016 Dec 1;35(23):2602-2613. Epub 2016 Oct 27. PMID:27789522 doi:http://dx.doi.org/10.15252/embj.201695222

5l66, resolution 2.80Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA