6skf: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
Line 1: Line 1:


====
==Cryo-EM Structure of T. kodakarensis 70S ribosome==
<StructureSection load='6skf' size='340' side='right'caption='[[6skf]]' scene=''>
<StructureSection load='6skf' size='340' side='right'caption='[[6skf]], [[Resolution|resolution]] 2.95&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id= OCA]. For a <b>guided tour on the structure components</b> use [http://proteopedia.org/fgij/fg.htm?mol= FirstGlance]. <br>
<table><tr><td colspan='2'>[[6skf]] is a 10 chain structure with sequence from [https://en.wikipedia.org/wiki/Thermococcus_kodakarensis Thermococcus kodakarensis]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6SKF OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6SKF FirstGlance]. <br>
</td></tr><tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://proteopedia.org/fgij/fg.htm?mol=6skf FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6skf OCA], [http://pdbe.org/6skf PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6skf RCSB], [http://www.ebi.ac.uk/pdbsum/6skf PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6skf ProSAT]</span></td></tr>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Electron Microscopy, [[Resolution|Resolution]] 2.95&#8491;</td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=2MG:2N-METHYLGUANOSINE-5-MONOPHOSPHATE'>2MG</scene>, <scene name='pdbligand=4AC:N(4)-ACETYLCYTIDINE-5-MONOPHOSPHATE'>4AC</scene>, <scene name='pdbligand=4SU:4-THIOURIDINE-5-MONOPHOSPHATE'>4SU</scene>, <scene name='pdbligand=5MC:5-METHYLCYTIDINE-5-MONOPHOSPHATE'>5MC</scene>, <scene name='pdbligand=5MU:5-METHYLURIDINE+5-MONOPHOSPHATE'>5MU</scene>, <scene name='pdbligand=6MZ:N6-METHYLADENOSINE-5-MONOPHOSPHATE'>6MZ</scene>, <scene name='pdbligand=A2M:2-O-METHYLADENOSINE+5-(DIHYDROGEN+PHOSPHATE)'>A2M</scene>, <scene name='pdbligand=B8T:4-methyl,+cytidine-5-monophosphate'>B8T</scene>, <scene name='pdbligand=LHH:[(2~{R},3~{R},4~{R},5~{R})-5-(4-acetamido-2-oxidanylidene-pyrimidin-1-yl)-4-methoxy-3-oxidanyl-oxolan-2-yl]methyl+dihydrogen+phosphate'>LHH</scene>, <scene name='pdbligand=LV2:[(2~{R},3~{S},4~{R},5~{R})-5-[4-(dimethylamino)-2-oxidanylidene-pyrimidin-1-yl]-3,4-bis(oxidanyl)oxolan-2-yl]methyl+dihydrogen+phosphate'>LV2</scene>, <scene name='pdbligand=MA6:6N-DIMETHYLADENOSINE-5-MONOPHOSHATE'>MA6</scene>, <scene name='pdbligand=OMC:O2-METHYLYCYTIDINE-5-MONOPHOSPHATE'>OMC</scene>, <scene name='pdbligand=OMG:O2-METHYLGUANOSINE-5-MONOPHOSPHATE'>OMG</scene>, <scene name='pdbligand=OMU:O2-METHYLURIDINE+5-MONOPHOSPHATE'>OMU</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6skf FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6skf OCA], [https://pdbe.org/6skf PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6skf RCSB], [https://www.ebi.ac.uk/pdbsum/6skf PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6skf ProSAT]</span></td></tr>
</table>
</table>
== Function ==
[https://www.uniprot.org/uniprot/RL24E_THEKO RL24E_THEKO] Binds to the 23S rRNA.
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
N(4)-acetylcytidine (ac(4)C) is an ancient and highly conserved RNA modification that is present on tRNA and rRNA and has recently been investigated in eukaryotic mRNA(1-3). However, the distribution, dynamics and functions of cytidine acetylation have yet to be fully elucidated. Here we report ac(4)C-seq, a chemical genomic method for the transcriptome-wide quantitative mapping of ac(4)C at single-nucleotide resolution. In human and yeast mRNAs, ac(4)C sites are not detected but can be induced-at a conserved sequence motif-via the ectopic overexpression of eukaryotic acetyltransferase complexes. By contrast, cross-evolutionary profiling revealed unprecedented levels of ac(4)C across hundreds of residues in rRNA, tRNA, non-coding RNA and mRNA from hyperthermophilic archaea. Ac(4)C is markedly induced in response to increases in temperature, and acetyltransferase-deficient archaeal strains exhibit temperature-dependent growth defects. Visualization of wild-type and acetyltransferase-deficient archaeal ribosomes by cryo-electron microscopy provided structural insights into the temperature-dependent distribution of ac(4)C and its potential thermoadaptive role. Our studies quantitatively define the ac(4)C landscape, providing a technical and conceptual foundation for elucidating the role of this modification in biology and disease(4-6).
Dynamic RNA acetylation revealed by quantitative cross-evolutionary mapping.,Sas-Chen A, Thomas JM, Matzov D, Taoka M, Nance KD, Nir R, Bryson KM, Shachar R, Liman GLS, Burkhart BW, Gamage ST, Nobe Y, Briney CA, Levy MJ, Fuchs RT, Robb GB, Hartmann J, Sharma S, Lin Q, Florens L, Washburn MP, Isobe T, Santangelo TJ, Shalev-Benami M, Meier JL, Schwartz S Nature. 2020 Jul;583(7817):638-643. doi: 10.1038/s41586-020-2418-2. Epub 2020 Jun , 17. PMID:32555463<ref>PMID:32555463</ref>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 6skf" style="background-color:#fffaf0;"></div>
==See Also==
*[[Ribosome 3D structures|Ribosome 3D structures]]
== References ==
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>
[[Category: Large Structures]]
[[Category: Large Structures]]
[[Category: Z-disk]]
[[Category: Thermococcus kodakarensis]]
[[Category: Matzov D]]
[[Category: Meier JL]]
[[Category: Santangelo T]]
[[Category: Sas-Chen A]]
[[Category: Schwartz S]]
[[Category: Shalev-Benami M]]
[[Category: Thomas JM]]

Latest revision as of 13:15, 22 May 2024

Cryo-EM Structure of T. kodakarensis 70S ribosomeCryo-EM Structure of T. kodakarensis 70S ribosome

Structural highlights

6skf is a 10 chain structure with sequence from Thermococcus kodakarensis. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:Electron Microscopy, Resolution 2.95Å
Ligands:, , , , , , , , , , , , , ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

RL24E_THEKO Binds to the 23S rRNA.

Publication Abstract from PubMed

N(4)-acetylcytidine (ac(4)C) is an ancient and highly conserved RNA modification that is present on tRNA and rRNA and has recently been investigated in eukaryotic mRNA(1-3). However, the distribution, dynamics and functions of cytidine acetylation have yet to be fully elucidated. Here we report ac(4)C-seq, a chemical genomic method for the transcriptome-wide quantitative mapping of ac(4)C at single-nucleotide resolution. In human and yeast mRNAs, ac(4)C sites are not detected but can be induced-at a conserved sequence motif-via the ectopic overexpression of eukaryotic acetyltransferase complexes. By contrast, cross-evolutionary profiling revealed unprecedented levels of ac(4)C across hundreds of residues in rRNA, tRNA, non-coding RNA and mRNA from hyperthermophilic archaea. Ac(4)C is markedly induced in response to increases in temperature, and acetyltransferase-deficient archaeal strains exhibit temperature-dependent growth defects. Visualization of wild-type and acetyltransferase-deficient archaeal ribosomes by cryo-electron microscopy provided structural insights into the temperature-dependent distribution of ac(4)C and its potential thermoadaptive role. Our studies quantitatively define the ac(4)C landscape, providing a technical and conceptual foundation for elucidating the role of this modification in biology and disease(4-6).

Dynamic RNA acetylation revealed by quantitative cross-evolutionary mapping.,Sas-Chen A, Thomas JM, Matzov D, Taoka M, Nance KD, Nir R, Bryson KM, Shachar R, Liman GLS, Burkhart BW, Gamage ST, Nobe Y, Briney CA, Levy MJ, Fuchs RT, Robb GB, Hartmann J, Sharma S, Lin Q, Florens L, Washburn MP, Isobe T, Santangelo TJ, Shalev-Benami M, Meier JL, Schwartz S Nature. 2020 Jul;583(7817):638-643. doi: 10.1038/s41586-020-2418-2. Epub 2020 Jun , 17. PMID:32555463[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Sas-Chen A, Thomas JM, Matzov D, Taoka M, Nance KD, Nir R, Bryson KM, Shachar R, Liman GLS, Burkhart BW, Gamage ST, Nobe Y, Briney CA, Levy MJ, Fuchs RT, Robb GB, Hartmann J, Sharma S, Lin Q, Florens L, Washburn MP, Isobe T, Santangelo TJ, Shalev-Benami M, Meier JL, Schwartz S. Dynamic RNA acetylation revealed by quantitative cross-evolutionary mapping. Nature. 2020 Jul;583(7817):638-643. PMID:32555463 doi:10.1038/s41586-020-2418-2

6skf, resolution 2.95Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA