6w5t: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:


==NPC1 structure in GDN micelles at pH 5.5, conformation a==
==NPC1 structure in GDN micelles at pH 5.5, conformation a==
<StructureSection load='6w5t' size='340' side='right'caption='[[6w5t]]' scene=''>
<StructureSection load='6w5t' size='340' side='right'caption='[[6w5t]], [[Resolution|resolution]] 3.70&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6W5T OCA]. For a <b>guided tour on the structure components</b> use [http://proteopedia.org/fgij/fg.htm?mol=6W5T FirstGlance]. <br>
<table><tr><td colspan='2'>[[6w5t]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6W5T OCA]. For a <b>guided tour on the structure components</b> use [http://proteopedia.org/fgij/fg.htm?mol=6W5T FirstGlance]. <br>
</td></tr><tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://proteopedia.org/fgij/fg.htm?mol=6w5t FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6w5t OCA], [http://pdbe.org/6w5t PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6w5t RCSB], [http://www.ebi.ac.uk/pdbsum/6w5t PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6w5t ProSAT]</span></td></tr>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=BMA:BETA-D-MANNOSE'>BMA</scene>, <scene name='pdbligand=CLR:CHOLESTEROL'>CLR</scene>, <scene name='pdbligand=MAN:ALPHA-D-MANNOSE'>MAN</scene>, <scene name='pdbligand=NAG:N-ACETYL-D-GLUCOSAMINE'>NAG</scene></td></tr>
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">NPC1 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://proteopedia.org/fgij/fg.htm?mol=6w5t FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6w5t OCA], [http://pdbe.org/6w5t PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6w5t RCSB], [http://www.ebi.ac.uk/pdbsum/6w5t PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6w5t ProSAT]</span></td></tr>
</table>
</table>
== Disease ==
[[http://www.uniprot.org/uniprot/NPC1_HUMAN NPC1_HUMAN]] Defects in NPC1 are the cause of Niemann-Pick disease type C1 (NPC1) [MIM:[http://omim.org/entry/257220 257220]]. A lysosomal storage disorder that affects the viscera and the central nervous system. It is due to defective intracellular processing and transport of low-density lipoprotein derived cholesterol. It causes accumulation of cholesterol in lysosomes, with delayed induction of cholesterol homeostatic reactions. Niemann-Pick disease type C1 has a highly variable clinical phenotype. Clinical features include variable hepatosplenomegaly and severe progressive neurological dysfunction such as ataxia, dystonia and dementia. The age of onset can vary from infancy to late adulthood. An allelic variant of Niemann-Pick disease type C1 is found in people with Nova Scotia ancestry. Patients with the Nova Scotian clinical variant are less severely affected.<ref>PMID:9211849</ref> <ref>PMID:11754101</ref> <ref>PMID:9634529</ref> <ref>PMID:10521290</ref> <ref>PMID:10521297</ref> <ref>PMID:10480349</ref> <ref>PMID:11182931</ref> <ref>PMID:11349231</ref> <ref>PMID:11333381</ref> <ref>PMID:11545687</ref> <ref>PMID:11479732</ref> <ref>PMID:12408188</ref> <ref>PMID:12401890</ref> <ref>PMID:12554680</ref> <ref>PMID:12955717</ref> <ref>PMID:16098014</ref> <ref>PMID:15774455</ref> <ref>PMID:16126423</ref> <ref>PMID:16802107</ref> 
== Function ==
[[http://www.uniprot.org/uniprot/NPC1_HUMAN NPC1_HUMAN]] Intracellular cholesterol transporter which acts in concert with NPC2 and plays an important role in the egress of cholesterol from the endosomal/lysosomal compartment. Both NPC1 and NPC2 function as the cellular 'tag team duo' (TTD) to catalyze the mobilization of cholesterol within the multivesicular environment of the late endosome (LE) to effect egress through the limiting bilayer of the LE. NPC2 binds unesterified cholesterol that has been released from LDLs in the lumen of the late endosomes/lysosomes and transfers it to the cholesterol-binding pocket of the N-terminal domain of NPC1. Cholesterol binds to NPC1 with the hydroxyl group buried in the binding pocket and is exported from the limiting membrane of late endosomes/ lysosomes to the ER and plasma membrane by an unknown mechanism. Binds oxysterol with higher affinity than cholesterol. May play a role in vesicular trafficking in glia, a process that may be crucial for maintaining the structural and functional integrity of nerve terminals.<ref>PMID:18772377</ref> 
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Lysosomal cholesterol egress requires two proteins, NPC1 and NPC2, whose defects are responsible for Niemann-Pick disease type C (NPC). Here, we present systematic structural characterizations that reveal the molecular basis for low-pH-dependent cholesterol delivery from NPC2 to the transmembrane (TM) domain of NPC1. At pH 8.0, similar structures of NPC1 were obtained in nanodiscs and in detergent at resolutions of 3.6 A and 3.0 A, respectively. A tunnel connecting the N-terminal domain (NTD) and the transmembrane sterol-sensing domain (SSD) was unveiled. At pH 5.5, the NTD exhibits two conformations, suggesting the motion for cholesterol delivery to the tunnel. A putative cholesterol molecule is found at the membrane boundary of the tunnel, and TM2 moves toward formation of a surface pocket on the SSD. Finally, the structure of the NPC1-NPC2 complex at 4.0 A resolution was obtained at pH 5.5, elucidating the molecular basis for cholesterol handoff from NPC2 to NPC1(NTD).
Structural Basis of Low-pH-Dependent Lysosomal Cholesterol Egress by NPC1 and NPC2.,Qian H, Wu X, Du X, Yao X, Zhao X, Lee J, Yang H, Yan N Cell. 2020 Jun 11. pii: S0092-8674(20)30615-2. doi: 10.1016/j.cell.2020.05.020. PMID:32544384<ref>PMID:32544384</ref>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 6w5t" style="background-color:#fffaf0;"></div>
== References ==
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>
[[Category: Human]]
[[Category: Large Structures]]
[[Category: Large Structures]]
[[Category: Qian HW]]
[[Category: Qian, H W]]
[[Category: Wu XL]]
[[Category: Wu, X L]]
[[Category: Yan N]]
[[Category: Yan, N]]
[[Category: Cholesterol lysosome]]
[[Category: Transport protein]]

Revision as of 14:42, 22 July 2020

NPC1 structure in GDN micelles at pH 5.5, conformation aNPC1 structure in GDN micelles at pH 5.5, conformation a

Structural highlights

6w5t is a 1 chain structure with sequence from Human. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:, , ,
Gene:NPC1 (HUMAN)
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Disease

[NPC1_HUMAN] Defects in NPC1 are the cause of Niemann-Pick disease type C1 (NPC1) [MIM:257220]. A lysosomal storage disorder that affects the viscera and the central nervous system. It is due to defective intracellular processing and transport of low-density lipoprotein derived cholesterol. It causes accumulation of cholesterol in lysosomes, with delayed induction of cholesterol homeostatic reactions. Niemann-Pick disease type C1 has a highly variable clinical phenotype. Clinical features include variable hepatosplenomegaly and severe progressive neurological dysfunction such as ataxia, dystonia and dementia. The age of onset can vary from infancy to late adulthood. An allelic variant of Niemann-Pick disease type C1 is found in people with Nova Scotia ancestry. Patients with the Nova Scotian clinical variant are less severely affected.[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19]

Function

[NPC1_HUMAN] Intracellular cholesterol transporter which acts in concert with NPC2 and plays an important role in the egress of cholesterol from the endosomal/lysosomal compartment. Both NPC1 and NPC2 function as the cellular 'tag team duo' (TTD) to catalyze the mobilization of cholesterol within the multivesicular environment of the late endosome (LE) to effect egress through the limiting bilayer of the LE. NPC2 binds unesterified cholesterol that has been released from LDLs in the lumen of the late endosomes/lysosomes and transfers it to the cholesterol-binding pocket of the N-terminal domain of NPC1. Cholesterol binds to NPC1 with the hydroxyl group buried in the binding pocket and is exported from the limiting membrane of late endosomes/ lysosomes to the ER and plasma membrane by an unknown mechanism. Binds oxysterol with higher affinity than cholesterol. May play a role in vesicular trafficking in glia, a process that may be crucial for maintaining the structural and functional integrity of nerve terminals.[20]

Publication Abstract from PubMed

Lysosomal cholesterol egress requires two proteins, NPC1 and NPC2, whose defects are responsible for Niemann-Pick disease type C (NPC). Here, we present systematic structural characterizations that reveal the molecular basis for low-pH-dependent cholesterol delivery from NPC2 to the transmembrane (TM) domain of NPC1. At pH 8.0, similar structures of NPC1 were obtained in nanodiscs and in detergent at resolutions of 3.6 A and 3.0 A, respectively. A tunnel connecting the N-terminal domain (NTD) and the transmembrane sterol-sensing domain (SSD) was unveiled. At pH 5.5, the NTD exhibits two conformations, suggesting the motion for cholesterol delivery to the tunnel. A putative cholesterol molecule is found at the membrane boundary of the tunnel, and TM2 moves toward formation of a surface pocket on the SSD. Finally, the structure of the NPC1-NPC2 complex at 4.0 A resolution was obtained at pH 5.5, elucidating the molecular basis for cholesterol handoff from NPC2 to NPC1(NTD).

Structural Basis of Low-pH-Dependent Lysosomal Cholesterol Egress by NPC1 and NPC2.,Qian H, Wu X, Du X, Yao X, Zhao X, Lee J, Yang H, Yan N Cell. 2020 Jun 11. pii: S0092-8674(20)30615-2. doi: 10.1016/j.cell.2020.05.020. PMID:32544384[21]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Carstea ED, Morris JA, Coleman KG, Loftus SK, Zhang D, Cummings C, Gu J, Rosenfeld MA, Pavan WJ, Krizman DB, Nagle J, Polymeropoulos MH, Sturley SL, Ioannou YA, Higgins ME, Comly M, Cooney A, Brown A, Kaneski CR, Blanchette-Mackie EJ, Dwyer NK, Neufeld EB, Chang TY, Liscum L, Strauss JF 3rd, Ohno K, Zeigler M, Carmi R, Sokol J, Markie D, O'Neill RR, van Diggelen OP, Elleder M, Patterson MC, Brady RO, Vanier MT, Pentchev PG, Tagle DA. Niemann-Pick C1 disease gene: homology to mediators of cholesterol homeostasis. Science. 1997 Jul 11;277(5323):228-31. PMID:9211849
  2. Bauer P, Knoblich R, Bauer C, Finckh U, Hufen A, Kropp J, Braun S, Kustermann-Kuhn B, Schmidt D, Harzer K, Rolfs A. NPC1: Complete genomic sequence, mutation analysis, and characterization of haplotypes. Hum Mutat. 2002 Jan;19(1):30-8. PMID:11754101 doi:10.1002/humu.10016
  3. Greer WL, Riddell DC, Gillan TL, Girouard GS, Sparrow SM, Byers DM, Dobson MJ, Neumann PE. The Nova Scotia (type D) form of Niemann-Pick disease is caused by a G3097-->T transversion in NPC1. Am J Hum Genet. 1998 Jul;63(1):52-4. PMID:9634529 doi:10.1086/301931
  4. Greer WL, Dobson MJ, Girouard GS, Byers DM, Riddell DC, Neumann PE. Mutations in NPC1 highlight a conserved NPC1-specific cysteine-rich domain. Am J Hum Genet. 1999 Nov;65(5):1252-60. PMID:10521290
  5. Millat G, Marcais C, Rafi MA, Yamamoto T, Morris JA, Pentchev PG, Ohno K, Wenger DA, Vanier MT. Niemann-Pick C1 disease: the I1061T substitution is a frequent mutant allele in patients of Western European descent and correlates with a classic juvenile phenotype. Am J Hum Genet. 1999 Nov;65(5):1321-9. PMID:10521297 doi:10.1086/302626
  6. Yamamoto T, Nanba E, Ninomiya H, Higaki K, Taniguchi M, Zhang H, Akaboshi S, Watanabe Y, Takeshima T, Inui K, Okada S, Tanaka A, Sakuragawa N, Millat G, Vanier MT, Morris JA, Pentchev PG, Ohno K. NPC1 gene mutations in Japanese patients with Niemann-Pick disease type C. Hum Genet. 1999 Jul-Aug;105(1-2):10-6. PMID:10480349
  7. Yamamoto T, Ninomiya H, Matsumoto M, Ohta Y, Nanba E, Tsutsumi Y, Yamakawa K, Millat G, Vanier MT, Pentchev PG, Ohno K. Genotype-phenotype relationship of Niemann-Pick disease type C: a possible correlation between clinical onset and levels of NPC1 protein in isolated skin fibroblasts. J Med Genet. 2000 Sep;37(9):707-12. PMID:11182931
  8. Sun X, Marks DL, Park WD, Wheatley CL, Puri V, O'Brien JF, Kraft DL, Lundquist PA, Patterson MC, Pagano RE, Snow K. Niemann-Pick C variant detection by altered sphingolipid trafficking and correlation with mutations within a specific domain of NPC1. Am J Hum Genet. 2001 Jun;68(6):1361-72. Epub 2001 May 9. PMID:11349231 doi:S0002-9297(07)61047-7
  9. Millat G, Marcais C, Tomasetto C, Chikh K, Fensom AH, Harzer K, Wenger DA, Ohno K, Vanier MT. Niemann-Pick C1 disease: correlations between NPC1 mutations, levels of NPC1 protein, and phenotypes emphasize the functional significance of the putative sterol-sensing domain and of the cysteine-rich luminal loop. Am J Hum Genet. 2001 Jun;68(6):1373-85. Epub 2001 May 1. PMID:11333381 doi:10.1086/320606
  10. Meiner V, Shpitzen S, Mandel H, Klar A, Ben-Neriah Z, Zlotogora J, Sagi M, Lossos A, Bargal R, Sury V, Carmi R, Leitersdorf E, Zeigler M. Clinical-biochemical correlation in molecularly characterized patients with Niemann-Pick type C. Genet Med. 2001 Sep-Oct;3(5):343-8. PMID:11545687
  11. Ribeiro I, Marcao A, Amaral O, Sa Miranda MC, Vanier MT, Millat G. Niemann-Pick type C disease: NPC1 mutations associated with severe and mild cellular cholesterol trafficking alterations. Hum Genet. 2001 Jul;109(1):24-32. PMID:11479732
  12. Kaminski WE, Klunemann HH, Ibach B, Aslanidis C, Klein HE, Schmitz G. Identification of novel mutations in the NPC1 gene in German patients with Niemann-Pick C disease. J Inherit Metab Dis. 2002 Sep;25(5):385-9. PMID:12408188
  13. Tarugi P, Ballarini G, Bembi B, Battisti C, Palmeri S, Panzani F, Di Leo E, Martini C, Federico A, Calandra S. Niemann-Pick type C disease: mutations of NPC1 gene and evidence of abnormal expression of some mutant alleles in fibroblasts. J Lipid Res. 2002 Nov;43(11):1908-19. PMID:12401890
  14. Blom TS, Linder MD, Snow K, Pihko H, Hess MW, Jokitalo E, Veckman V, Syvanen AC, Ikonen E. Defective endocytic trafficking of NPC1 and NPC2 underlying infantile Niemann-Pick type C disease. Hum Mol Genet. 2003 Feb 1;12(3):257-72. PMID:12554680
  15. Park WD, O'Brien JF, Lundquist PA, Kraft DL, Vockley CW, Karnes PS, Patterson MC, Snow K. Identification of 58 novel mutations in Niemann-Pick disease type C: correlation with biochemical phenotype and importance of PTC1-like domains in NPC1. Hum Mutat. 2003 Oct;22(4):313-25. PMID:12955717 doi:http://dx.doi.org/10.1002/humu.10255
  16. Fernandez-Valero EM, Ballart A, Iturriaga C, Lluch M, Macias J, Vanier MT, Pineda M, Coll MJ. Identification of 25 new mutations in 40 unrelated Spanish Niemann-Pick type C patients: genotype-phenotype correlations. Clin Genet. 2005 Sep;68(3):245-54. PMID:16098014 doi:CGE490
  17. Yang CC, Su YN, Chiou PC, Fietz MJ, Yu CL, Hwu WL, Lee MJ. Six novel NPC1 mutations in Chinese patients with Niemann-Pick disease type C. J Neurol Neurosurg Psychiatry. 2005 Apr;76(4):592-5. PMID:15774455 doi:10.1136/jnnp.2004.046045
  18. Millat G, Bailo N, Molinero S, Rodriguez C, Chikh K, Vanier MT. Niemann-Pick C disease: use of denaturing high performance liquid chromatography for the detection of NPC1 and NPC2 genetic variations and impact on management of patients and families. Mol Genet Metab. 2005 Sep-Oct;86(1-2):220-32. PMID:16126423 doi:10.1016/j.ymgme.2005.07.007
  19. Dvorakova L, Sikora J, Hrebicek M, Hulkova H, Bouckova M, Stolnaja L, Elleder M. Subclinical course of adult visceral Niemann-Pick type C1 disease. A rare or underdiagnosed disorder? J Inherit Metab Dis. 2006 Aug;29(4):591. Epub 2006 Jun 26. PMID:16802107 doi:10.1007/s10545-006-0330-z
  20. Infante RE, Wang ML, Radhakrishnan A, Kwon HJ, Brown MS, Goldstein JL. NPC2 facilitates bidirectional transfer of cholesterol between NPC1 and lipid bilayers, a step in cholesterol egress from lysosomes. Proc Natl Acad Sci U S A. 2008 Oct 7;105(40):15287-92. doi:, 10.1073/pnas.0807328105. Epub 2008 Sep 4. PMID:18772377 doi:10.1073/pnas.0807328105
  21. Qian H, Wu X, Du X, Yao X, Zhao X, Lee J, Yang H, Yan N. Structural Basis of Low-pH-Dependent Lysosomal Cholesterol Egress by NPC1 and NPC2. Cell. 2020 Jun 11. pii: S0092-8674(20)30615-2. doi: 10.1016/j.cell.2020.05.020. PMID:32544384 doi:http://dx.doi.org/10.1016/j.cell.2020.05.020

6w5t, resolution 3.70Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA