6lzg: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 11: | Line 11: | ||
== Function == | == Function == | ||
[[http://www.uniprot.org/uniprot/ACE2_HUMAN ACE2_HUMAN]] Carboxypeptidase which converts angiotensin I to angiotensin 1-9, a peptide of unknown function, and angiotensin II to angiotensin 1-7, a vasodilator. Also able to hydrolyze apelin-13 and dynorphin-13 with high efficiency. May be an important regulator of heart function. In case of human coronaviruses SARS and HCoV-NL63 infections, serve as functional receptor for the spike glycoprotein of both coronaviruses.<ref>PMID:10969042</ref> <ref>PMID:10924499</ref> <ref>PMID:14647384</ref> | [[http://www.uniprot.org/uniprot/ACE2_HUMAN ACE2_HUMAN]] Carboxypeptidase which converts angiotensin I to angiotensin 1-9, a peptide of unknown function, and angiotensin II to angiotensin 1-7, a vasodilator. Also able to hydrolyze apelin-13 and dynorphin-13 with high efficiency. May be an important regulator of heart function. In case of human coronaviruses SARS and HCoV-NL63 infections, serve as functional receptor for the spike glycoprotein of both coronaviruses.<ref>PMID:10969042</ref> <ref>PMID:10924499</ref> <ref>PMID:14647384</ref> | ||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
The recent emergence of a novel coronavirus (SARS-CoV-2) in China has caused significant public health concerns. Recently, ACE2 was reported as an entry receptor for SARS-CoV-2. In this study, we present the crystal structure of the C-terminal domain of SARS-CoV-2 (SARS-CoV-2-CTD) spike (S) protein in complex with human ACE2 (hACE2), which reveals a hACE2-binding mode similar overall to that observed for SARS-CoV. However, atomic details at the binding interface demonstrate that key residue substitutions in SARS-CoV-2-CTD slightly strengthen the interaction and lead to higher affinity for receptor binding than SARS-RBD. Additionally, a panel of murine monoclonal antibodies (mAbs) and polyclonal antibodies (pAbs) against SARS-CoV-S1/receptor-binding domain (RBD) were unable to interact with the SARS-CoV-2 S protein, indicating notable differences in antigenicity between SARS-CoV and SARS-CoV-2. These findings shed light on the viral pathogenesis and provide important structural information regarding development of therapeutic countermeasures against the emerging virus. | |||
Structural and Functional Basis of SARS-CoV-2 Entry by Using Human ACE2.,Wang Q, Zhang Y, Wu L, Niu S, Song C, Zhang Z, Lu G, Qiao C, Hu Y, Yuen KY, Wang Q, Zhou H, Yan J, Qi J Cell. 2020 Apr 7. pii: S0092-8674(20)30338-X. doi: 10.1016/j.cell.2020.03.045. PMID:32275855<ref>PMID:32275855</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 6lzg" style="background-color:#fffaf0;"></div> | |||
==See Also== | ==See Also== |
Revision as of 09:02, 22 April 2020
|