6qv8: Difference between revisions
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
<StructureSection load='6qv8' size='340' side='right'caption='[[6qv8]], [[Resolution|resolution]] 1.50Å' scene=''> | <StructureSection load='6qv8' size='340' side='right'caption='[[6qv8]], [[Resolution|resolution]] 1.50Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[6qv8]] is a 2 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6QV8 OCA]. For a <b>guided tour on the structure components</b> use [http:// | <table><tr><td colspan='2'>[[6qv8]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/"micrococcus_aureus"_(rosenbach_1884)_zopf_1885 "micrococcus aureus" (rosenbach 1884) zopf 1885]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6QV8 OCA]. For a <b>guided tour on the structure components</b> use [http://proteopedia.org/fgij/fg.htm?mol=6QV8 FirstGlance]. <br> | ||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=MN:MANGANESE+(II)+ION'>MN</scene></td></tr> | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=MN:MANGANESE+(II)+ION'>MN</scene></td></tr> | ||
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">sodA, sodM, BN1321_40056, BTN44_00625, CSC83_08500, CV021_03995, EP54_06740, EQ90_09180, ERS072840_00559, HMPREF3211_00238, M1K003_0636, NCTC10654_00163, NCTC10702_00282, NCTC11940_00074, NCTC13131_06218, NCTC13196_01115, NCTC5664_00801, RK64_01130, SAMEA1466939_02412, SAMEA1708674_03236 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=1280 "Micrococcus aureus" (Rosenbach 1884) Zopf 1885])</td></tr> | |||
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Superoxide_dismutase Superoxide dismutase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=1.15.1.1 1.15.1.1] </span></td></tr> | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Superoxide_dismutase Superoxide dismutase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=1.15.1.1 1.15.1.1] </span></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http:// | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://proteopedia.org/fgij/fg.htm?mol=6qv8 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6qv8 OCA], [http://pdbe.org/6qv8 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6qv8 RCSB], [http://www.ebi.ac.uk/pdbsum/6qv8 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6qv8 ProSAT]</span></td></tr> | ||
</table> | </table> | ||
== Function == | == Function == | ||
[[http://www.uniprot.org/uniprot/W8UU58_STAAU W8UU58_STAAU]] Destroys radicals which are normally produced within the cells and which are toxic to biological systems.[RuleBase:RU000414] | [[http://www.uniprot.org/uniprot/W8UU58_STAAU W8UU58_STAAU]] Destroys radicals which are normally produced within the cells and which are toxic to biological systems.[RuleBase:RU000414] | ||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
Almost half of all enzymes utilize a metal cofactor. However, the features that dictate the metal utilized by metalloenzymes are poorly understood, limiting our ability to manipulate these enzymes for industrial and health-associated applications. The ubiquitous iron/manganese superoxide dismutase (SOD) family exemplifies this deficit, as the specific metal used by any family member cannot be predicted. Biochemical, structural and paramagnetic analysis of two evolutionarily related SODs with different metal specificity produced by the pathogenic bacterium Staphylococcus aureus identifies two positions that control metal specificity. These residues make no direct contacts with the metal-coordinating ligands but control the metal's redox properties, demonstrating that subtle architectural changes can dramatically alter metal utilization. Introducing these mutations into S. aureus alters the ability of the bacterium to resist superoxide stress when metal starved by the host, revealing that small changes in metal-dependent activity can drive the evolution of metalloenzymes with new cofactor specificity. | |||
An evolutionary path to altered cofactor specificity in a metalloenzyme.,Barwinska-Sendra A, Garcia YM, Sendra KM, Basle A, Mackenzie ES, Tarrant E, Card P, Tabares LC, Bicep C, Un S, Kehl-Fie TE, Waldron KJ Nat Commun. 2020 Jun 1;11(1):2738. doi: 10.1038/s41467-020-16478-0. PMID:32483131<ref>PMID:32483131</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 6qv8" style="background-color:#fffaf0;"></div> | |||
== References == | |||
<references/> | |||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> |
Revision as of 09:39, 10 June 2020
Staphylococcus aureus superoxide dismutase SodM double mutantStaphylococcus aureus superoxide dismutase SodM double mutant
Structural highlights
Function[W8UU58_STAAU] Destroys radicals which are normally produced within the cells and which are toxic to biological systems.[RuleBase:RU000414] Publication Abstract from PubMedAlmost half of all enzymes utilize a metal cofactor. However, the features that dictate the metal utilized by metalloenzymes are poorly understood, limiting our ability to manipulate these enzymes for industrial and health-associated applications. The ubiquitous iron/manganese superoxide dismutase (SOD) family exemplifies this deficit, as the specific metal used by any family member cannot be predicted. Biochemical, structural and paramagnetic analysis of two evolutionarily related SODs with different metal specificity produced by the pathogenic bacterium Staphylococcus aureus identifies two positions that control metal specificity. These residues make no direct contacts with the metal-coordinating ligands but control the metal's redox properties, demonstrating that subtle architectural changes can dramatically alter metal utilization. Introducing these mutations into S. aureus alters the ability of the bacterium to resist superoxide stress when metal starved by the host, revealing that small changes in metal-dependent activity can drive the evolution of metalloenzymes with new cofactor specificity. An evolutionary path to altered cofactor specificity in a metalloenzyme.,Barwinska-Sendra A, Garcia YM, Sendra KM, Basle A, Mackenzie ES, Tarrant E, Card P, Tabares LC, Bicep C, Un S, Kehl-Fie TE, Waldron KJ Nat Commun. 2020 Jun 1;11(1):2738. doi: 10.1038/s41467-020-16478-0. PMID:32483131[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|