6ovk: Difference between revisions
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
<StructureSection load='6ovk' size='340' side='right'caption='[[6ovk]], [[Resolution|resolution]] 1.76Å' scene=''> | <StructureSection load='6ovk' size='340' side='right'caption='[[6ovk]], [[Resolution|resolution]] 1.76Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[6ovk]] is a 2 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6OVK OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6OVK FirstGlance]. <br> | <table><tr><td colspan='2'>[[6ovk]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/"pseudomonas_capeferrum"_berendsen_et_al._2015 "pseudomonas capeferrum" berendsen et al. 2015]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6OVK OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6OVK FirstGlance]. <br> | ||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=TLA:L(+)-TARTARIC+ACID'>TLA</scene></td></tr> | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=TLA:L(+)-TARTARIC+ACID'>TLA</scene></td></tr> | ||
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">PC358_08100, pupR ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=1495066 "Pseudomonas capeferrum" Berendsen et al. 2015]), PC358_08105, pupB ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=1495066 "Pseudomonas capeferrum" Berendsen et al. 2015])</td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6ovk FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6ovk OCA], [http://pdbe.org/6ovk PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6ovk RCSB], [http://www.ebi.ac.uk/pdbsum/6ovk PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6ovk ProSAT]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6ovk FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6ovk OCA], [http://pdbe.org/6ovk PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6ovk RCSB], [http://www.ebi.ac.uk/pdbsum/6ovk PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6ovk ProSAT]</span></td></tr> | ||
</table> | </table> | ||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
Cell-surface signaling (CSS) in Gram-negative bacteria involves highly conserved regulatory pathways that optimize gene expression by transducing extracellular environmental signals to the cytoplasm via inner-membrane sigma regulators. The molecular details of ferric siderophore-mediated activation of the iron import machinery through a sigma regulator are unclear. Here, we present the 1.56 A resolution structure of the periplasmic complex of the C-terminal CSS domain (CCSSD) of PupR, the sigma regulator in the Pseudomonas capeferrum pseudobactin BN7/8 transport system, and the N-terminal signaling domain (NTSD) of PupB, an outer-membrane TonB-dependent transducer. The structure revealed that the CCSSD consists of two subdomains: a juxta-membrane subdomain, which has a novel all-beta fold, followed by a secretin/TonB, short N-terminal subdomain at the C-terminus of the CCSSD, a previously unobserved topological arrangement of this domain. Using affinity pull-down assays, isothermal titration calorimetry, and thermal denaturation circular dichroism spectroscopy; we show that both subdomains are required for binding the NTSD with micromolar affinity and that NTSD binding improves CCSSD stability. Our findings prompt us to present a revised model of CSS wherein the CCSSD:NTSD complex forms prior to ferric-siderophore binding. Upon siderophore binding, conformational changes in the CCSSD enable regulated intramembrane proteolysis of the sigma regulator, ultimately resulting in transcriptional regulation. | |||
Structural basis of cell surface signaling by a conserved sigma regulator in Gram-negative bacteria.,Jensen JL, Jernberg BD, Sinha S, Colbert CL J Biol Chem. 2020 Feb 26. pii: RA119.010697. doi: 10.1074/jbc.RA119.010697. PMID:32107313<ref>PMID:32107313</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 6ovk" style="background-color:#fffaf0;"></div> | |||
== References == | |||
<references/> | |||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
[[Category: Pseudomonas capeferrum berendsen et al. 2015]] | |||
[[Category: Large Structures]] | [[Category: Large Structures]] | ||
[[Category: Colbert, C L]] | [[Category: Colbert, C L]] |
Revision as of 10:56, 11 March 2020
Crystal Structure of the Pseudomonas capeferrum Anti-sigma Regulator PupR C-terminal Cell-surface Signaling Domain in Complex with the Outer Membrane Transporter PupB N-terminal Signaling DomainCrystal Structure of the Pseudomonas capeferrum Anti-sigma Regulator PupR C-terminal Cell-surface Signaling Domain in Complex with the Outer Membrane Transporter PupB N-terminal Signaling Domain
Structural highlights
Publication Abstract from PubMedCell-surface signaling (CSS) in Gram-negative bacteria involves highly conserved regulatory pathways that optimize gene expression by transducing extracellular environmental signals to the cytoplasm via inner-membrane sigma regulators. The molecular details of ferric siderophore-mediated activation of the iron import machinery through a sigma regulator are unclear. Here, we present the 1.56 A resolution structure of the periplasmic complex of the C-terminal CSS domain (CCSSD) of PupR, the sigma regulator in the Pseudomonas capeferrum pseudobactin BN7/8 transport system, and the N-terminal signaling domain (NTSD) of PupB, an outer-membrane TonB-dependent transducer. The structure revealed that the CCSSD consists of two subdomains: a juxta-membrane subdomain, which has a novel all-beta fold, followed by a secretin/TonB, short N-terminal subdomain at the C-terminus of the CCSSD, a previously unobserved topological arrangement of this domain. Using affinity pull-down assays, isothermal titration calorimetry, and thermal denaturation circular dichroism spectroscopy; we show that both subdomains are required for binding the NTSD with micromolar affinity and that NTSD binding improves CCSSD stability. Our findings prompt us to present a revised model of CSS wherein the CCSSD:NTSD complex forms prior to ferric-siderophore binding. Upon siderophore binding, conformational changes in the CCSSD enable regulated intramembrane proteolysis of the sigma regulator, ultimately resulting in transcriptional regulation. Structural basis of cell surface signaling by a conserved sigma regulator in Gram-negative bacteria.,Jensen JL, Jernberg BD, Sinha S, Colbert CL J Biol Chem. 2020 Feb 26. pii: RA119.010697. doi: 10.1074/jbc.RA119.010697. PMID:32107313[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|