User:Nikhil Malvankar/Cytochrome nanowires: Difference between revisions

Eric Martz (talk | contribs)
No edit summary
Eric Martz (talk | contribs)
No edit summary
Line 89: Line 89:
<center>''References for the assertions below are cited in the journal publication<ref name="m3" />.
<center>''References for the assertions below are cited in the journal publication<ref name="m3" />.
</center>
</center>
Seamless micrometer-long polymerization of hundreds of cytochromes is without precedent, to the knowledge of the authors. The filaments whose structure was determined here were obtained from electrode-grown cells. However, fumarate-grown cells produced filaments with similar sinusoidal morphology. The purified OmcS filaments have morphology and power spectra similar to cell-attached filaments previously thought to be type IV pili. Direct current electrical conductivity of the wild type ~4 nm OmcS filaments was confirmed, and was comparable to previously reported filament conductivity values.
Seamless micrometer-long polymerization of hundreds of cytochromes is without precedent, to the knowledge of the authors. The filaments whose structure was determined here were obtained from electrode-grown cells. However, fumarate-grown cells produced filaments with similar sinusoidal morphology. The purified OmcS filaments have morphology and power spectra similar to cell-attached filaments previously thought to be type IV pili. Direct current electrical conductivity of individual wild type ~4 nm OmcS filaments was confirmed, and was comparable to previously reported filament conductivity values.


Cells with the ''omcS'' gene deleted (''&Delta;omcS'') produced thinner (~1.7 nm) filaments that were smooth (not sinusoidal) and had electrical conductivity >100-fold lower than the OmcS filaments. ''&Delta;omcS'' cells can produce electrically conductive biofilms, but that conductivity might well depend on filaments of OmcZ, whose expression is known to increase in ''&Delta;omcS'' cells.
Cells with the ''omcS'' gene deleted (''&Delta;omcS'') produced thinner (~1.7 nm) filaments that were smooth (not sinusoidal) and had electrical conductivity >100-fold lower than the OmcS filaments. ''&Delta;omcS'' cells can produce electrically conductive biofilms, but that conductivity might well depend on filaments of OmcZ, whose expression is known to increase in ''&Delta;omcS'' cells.