6sl9: Difference between revisions
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
<StructureSection load='6sl9' size='340' side='right'caption='[[6sl9]], [[Resolution|resolution]] 1.27Å' scene=''> | <StructureSection load='6sl9' size='340' side='right'caption='[[6sl9]], [[Resolution|resolution]] 1.27Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[6sl9]] is a 1 chain structure with sequence from [ | <table><tr><td colspan='2'>[[6sl9]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Thermus_thermophilus_JL-18 Thermus thermophilus JL-18]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6SL9 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6SL9 FirstGlance]. <br> | ||
</td></tr><tr id=' | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.27Å</td></tr> | ||
<tr id=' | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=GOL:GLYCEROL'>GOL</scene></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[ | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6sl9 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6sl9 OCA], [https://pdbe.org/6sl9 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6sl9 RCSB], [https://www.ebi.ac.uk/pdbsum/6sl9 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6sl9 ProSAT]</span></td></tr> | ||
</table> | </table> | ||
== Function == | |||
[https://www.uniprot.org/uniprot/H9ZNW0_THETH H9ZNW0_THETH] | |||
<div style="background-color:#fffaf0;"> | <div style="background-color:#fffaf0;"> | ||
== Publication Abstract from PubMed == | == Publication Abstract from PubMed == | ||
Line 17: | Line 19: | ||
</div> | </div> | ||
<div class="pdbe-citations 6sl9" style="background-color:#fffaf0;"></div> | <div class="pdbe-citations 6sl9" style="background-color:#fffaf0;"></div> | ||
==See Also== | |||
*[[Enoyl-CoA hydratase 3D structures|Enoyl-CoA hydratase 3D structures]] | |||
== References == | == References == | ||
<references/> | <references/> | ||
Line 22: | Line 27: | ||
</StructureSection> | </StructureSection> | ||
[[Category: Large Structures]] | [[Category: Large Structures]] | ||
[[Category: Thermus thermophilus | [[Category: Thermus thermophilus JL-18]] | ||
[[Category: Saleem-Batcha | [[Category: Saleem-Batcha R]] | ||
[[Category: Spieker | [[Category: Spieker M]] | ||
[[Category: Teufel | [[Category: Teufel R]] | ||
Latest revision as of 15:43, 24 January 2024
High resolution apo structure of isomerase PaaGHigh resolution apo structure of isomerase PaaG
Structural highlights
FunctionPublication Abstract from PubMedNumerous aromatic compounds are aerobically degraded in bacteria via the central intermediate phenylacetic acid (paa). In one of the key steps of this widespread catabolic pathway, 1,2-epoxyphenylacetyl-CoA is converted by PaaG into the heterocyclic oxepin-CoA. PaaG thereby elegantly generates an alpha,beta-unsaturated CoA ester that is predisposed to undergo beta-oxidation subsequent to hydrolytic ring-cleavage. Moreover, oxepin-CoA serves as a precursor for secondary metabolites (e.g., tropodithietic acid) that act as antibiotics and quorum-sensing signals. Here we verify that PaaG adopts a second role in aromatic catabolism by converting cis-3,4-didehydroadipoyl-CoA into trans-2,3-didehydroadipoyl-CoA and corroborate a Delta(3),Delta(2)-enoyl-CoA isomerase-like proton shuttling mechanism for both distinct substrates. Biochemical and structural investigations of PaaG reveal active site adaptations to the structurally different substrates and provide detailed insight into catalysis and control of stereospecificity. This work elucidates the mechanism of action of unusual isomerase PaaG and sheds new light on the ubiquitous enoyl-CoA isomerases of the crotonase superfamily. Structural and Mechanistic Basis of an Oxepin-CoA Forming Isomerase in Bacterial Primary and Secondary Metabolism.,Spieker M, Saleem-Batcha R, Teufel R ACS Chem Biol. 2019 Nov 18. doi: 10.1021/acschembio.9b00742. PMID:31689071[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|