1a2t: Difference between revisions
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
<StructureSection load='1a2t' size='340' side='right'caption='[[1a2t]], [[Resolution|resolution]] 1.96Å' scene=''> | <StructureSection load='1a2t' size='340' side='right'caption='[[1a2t]], [[Resolution|resolution]] 1.96Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[1a2t]] is a 1 chain structure with sequence from [ | <table><tr><td colspan='2'>[[1a2t]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/"micrococcus_aureus"_(rosenbach_1884)_zopf_1885 "micrococcus aureus" (rosenbach 1884) zopf 1885]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1A2T OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1A2T FirstGlance]. <br> | ||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=THP:THYMIDINE-3,5-DIPHOSPHATE'>THP</scene></td></tr> | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=THP:THYMIDINE-3,5-DIPHOSPHATE'>THP</scene></td></tr> | ||
<tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=CME:S,S-(2-HYDROXYETHYL)THIOCYSTEINE'>CME</scene></td></tr> | <tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=CME:S,S-(2-HYDROXYETHYL)THIOCYSTEINE'>CME</scene></td></tr> | ||
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[ | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[https://en.wikipedia.org/wiki/Micrococcal_nuclease Micrococcal nuclease], with EC number [https://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.1.31.1 3.1.31.1] </span></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[ | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1a2t FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1a2t OCA], [https://pdbe.org/1a2t PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1a2t RCSB], [https://www.ebi.ac.uk/pdbsum/1a2t PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1a2t ProSAT]</span></td></tr> | ||
</table> | </table> | ||
== Function == | == Function == | ||
[[ | [[https://www.uniprot.org/uniprot/NUC_STAAU NUC_STAAU]] Enzyme that catalyzes the hydrolysis of both DNA and RNA at the 5' position of the phosphodiester bond. | ||
== Evolutionary Conservation == | == Evolutionary Conservation == | ||
[[Image:Consurf_key_small.gif|200px|right]] | [[Image:Consurf_key_small.gif|200px|right]] | ||
Line 32: | Line 32: | ||
==See Also== | ==See Also== | ||
*[[Staphylococcal nuclease|Staphylococcal nuclease]] | *[[Staphylococcal nuclease 3D structures|Staphylococcal nuclease 3D structures]] | ||
== References == | == References == | ||
<references/> | <references/> |
Revision as of 10:13, 22 September 2021
STAPHYLOCOCCAL NUCLEASE, B-MERCAPTOETHANOL DISULFIDE TO V23C VARIANTSTAPHYLOCOCCAL NUCLEASE, B-MERCAPTOETHANOL DISULFIDE TO V23C VARIANT
Structural highlights
Function[NUC_STAAU] Enzyme that catalyzes the hydrolysis of both DNA and RNA at the 5' position of the phosphodiester bond. Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe structures of several variants of staphylococcal nuclease with long flexible unnatural amino acid side chains in the hydrophobic core have been determined by X-ray crystallography. The unnatural amino acids are disulfide moieties between the lone cysteine residue in V23C nuclease and methane, ethane, 1-n-propane, 1-n-butane, 1-n-pentane, and 2-hydroxyethyl thiols. We have examined changes in the core packing of these mutants. Side chains as large as the 1-n-propyl cysteine disulfide can be incorporated without perturbation of the structure. This is due, in part, to cavities present in the wild-type protein. The longest side chains are not well defined, even though they remain buried within the protein interior. These results suggest that the enthalpy-entropy balance that governs the rigidity of protein interiors favors tight packing only weakly. Additionally, the tight packing observed normally in protein interiors may reflect, in part, the limited numbers of rotamers available to the natural amino acids. Mobile unnatural amino acid side chains in the core of staphylococcal nuclease.,Wynn R, Harkins PC, Richards FM, Fox RO Protein Sci. 1996 Jun;5(6):1026-31. PMID:8762134[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|