6rwf: Difference between revisions

No edit summary
No edit summary
Line 3: Line 3:
<StructureSection load='6rwf' size='340' side='right'caption='[[6rwf]], [[Resolution|resolution]] 1.64&Aring;' scene=''>
<StructureSection load='6rwf' size='340' side='right'caption='[[6rwf]], [[Resolution|resolution]] 1.64&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[6rwf]] is a 1 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6RWF OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6RWF FirstGlance]. <br>
<table><tr><td colspan='2'>[[6rwf]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Hypjq Hypjq]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6RWF OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6RWF FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=CO:COBALT+(II)+ION'>CO</scene>, <scene name='pdbligand=NAG:N-ACETYL-D-GLUCOSAMINE'>NAG</scene></td></tr>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=CO:COBALT+(II)+ION'>CO</scene>, <scene name='pdbligand=NAG:N-ACETYL-D-GLUCOSAMINE'>NAG</scene></td></tr>
<tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=PCA:PYROGLUTAMIC+ACID'>PCA</scene></td></tr>
<tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=PCA:PYROGLUTAMIC+ACID'>PCA</scene></td></tr>
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">cel7a, TRIREDRAFT_123989 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=431241 HYPJQ])</td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6rwf FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6rwf OCA], [http://pdbe.org/6rwf PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6rwf RCSB], [http://www.ebi.ac.uk/pdbsum/6rwf PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6rwf ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6rwf FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6rwf OCA], [http://pdbe.org/6rwf PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6rwf RCSB], [http://www.ebi.ac.uk/pdbsum/6rwf PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6rwf ProSAT]</span></td></tr>
</table>
</table>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Cellulase enzymes deconstruct recalcitrant cellulose into soluble sugars, making them a biocatalyst of biotechnological interest for use in the nascent lignocellulosic bioeconomy. Cellobiohydrolases (CBHs) are cellulases capable of liberating many sugar molecules in a processive manner without dissociating from the substrate. Within the complete processive cycle of CBHs, dissociation from the cellulose substrate is rate limiting, but the molecular mechanism of this step is unknown. Here, we present a direct comparison of potential molecular mechanisms for dissociation via Hamiltonian replica exchange molecular dynamics of the model fungal CBH, Trichoderma reesei Cel7A. Computational rate estimates indicate that stepwise cellulose dethreading from the binding tunnel is 4 orders of magnitude faster than a clamshell mechanism, in which the substrate-enclosing loops open and release the substrate without reversing. We also present the crystal structure of a disulfide variant that covalently links substrate-enclosing loops on either side of the substrate-binding tunnel, which constitutes a CBH that can only dissociate via stepwise dethreading. Biochemical measurements indicate that this variant has a dissociation rate constant essentially equivalent to the wild type, implying that dethreading is likely the predominant mechanism for dissociation.
The dissociation mechanism of processive cellulases.,Vermaas JV, Kont R, Beckham GT, Crowley MF, Gudmundsson M, Sandgren M, Stahlberg J, Valjamae P, Knott BC Proc Natl Acad Sci U S A. 2019 Oct 30. pii: 1913398116. doi:, 10.1073/pnas.1913398116. PMID:31666327<ref>PMID:31666327</ref>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 6rwf" style="background-color:#fffaf0;"></div>
== References ==
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>
[[Category: Hypjq]]
[[Category: Large Structures]]
[[Category: Large Structures]]
[[Category: Knott, B C]]
[[Category: Knott, B C]]

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA