6og4: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
'''Unreleased structure'''


The entry 6og4 is ON HOLD until Paper Publication
==plasminogen binding group A streptococcal M protein==
<StructureSection load='6og4' size='340' side='right'caption='[[6og4]], [[Resolution|resolution]] 1.70&Aring;' scene=''>
== Structural highlights ==
<table><tr><td colspan='2'>[[6og4]] is a 3 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6OG4 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6OG4 FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr>
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Plasmin Plasmin], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.4.21.7 3.4.21.7] </span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6og4 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6og4 OCA], [http://pdbe.org/6og4 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6og4 RCSB], [http://www.ebi.ac.uk/pdbsum/6og4 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6og4 ProSAT]</span></td></tr>
</table>
== Disease ==
[[http://www.uniprot.org/uniprot/PLMN_HUMAN PLMN_HUMAN]] Defects in PLG are the cause of plasminogen deficiency (PLGD) [MIM:[http://omim.org/entry/217090 217090]]. PLGD is characterized by decreased serum plasminogen activity. Two forms of the disorder are distinguished: type 1 deficiency is additionally characterized by decreased plasminogen antigen levels and clinical symptoms, whereas type 2 deficiency, also known as dysplasminogenemia, is characterized by normal, or slightly reduced antigen levels, and absence of clinical manifestations. Plasminogen deficiency type 1 results in markedly impaired extracellular fibrinolysis and chronic mucosal pseudomembranous lesions due to subepithelial fibrin deposition and inflammation. The most common clinical manifestation of type 1 deficiency is ligneous conjunctivitis in which pseudomembranes formation on the palpebral surfaces of the eye progresses to white, yellow-white, or red thick masses with a wood-like consistency that replace the normal mucosa.<ref>PMID:1986355</ref> <ref>PMID:8392398</ref> <ref>PMID:6216475</ref> <ref>PMID:6238949</ref> <ref>PMID:1427790</ref> <ref>PMID:9242524</ref> <ref>PMID:9858247</ref> <ref>PMID:10233898</ref> 
== Function ==
[[http://www.uniprot.org/uniprot/PLMN_HUMAN PLMN_HUMAN]] Plasmin dissolves the fibrin of blood clots and acts as a proteolytic factor in a variety of other processes including embryonic development, tissue remodeling, tumor invasion, and inflammation. In ovulation, weakens the walls of the Graafian follicle. It activates the urokinase-type plasminogen activator, collagenases and several complement zymogens, such as C1 and C5. Cleavage of fibronectin and laminin leads to cell detachment and apoptosis. Also cleaves fibrin, thrombospondin and von Willebrand factor. Its role in tissue remodeling and tumor invasion may be modulated by CSPG4. Binds to cells.<ref>PMID:14699093</ref>  Angiostatin is an angiogenesis inhibitor that blocks neovascularization and growth of experimental primary and metastatic tumors in vivo.<ref>PMID:14699093</ref> [[http://www.uniprot.org/uniprot/PAM_STRPY PAM_STRPY]] Binds to human plasminogen (and plasmin) via its kringle repeats. Also binds to albumin, immunoglobulin G and fibrinogen. Could provide the bacteria with a mechanism for invasion, as streptococcal-bound plasmin could permit tissue penetration.
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Plasminogen (Plg)-binding M protein (PAM) is a group A streptococcal cell surface receptor that is crucial for bacterial virulence. Previous studies revealed that, by binding to the kringle 2 (KR2) domain of host Plg, the pathogen attains a proteolytic microenvironment on the cell surface that facilitates its dissemination from the primary infection site. Each of the PAM molecules in their dimeric assembly consists of two Plg binding motifs (called the a1 and a2 repeats). To date, the molecular interactions between the a1 repeat and KR2 have been structurally characterized, whereas the role of the a2 repeat is less well defined. Here, we report the 1.7-A x-ray crystal structure of KR2 in complex with a monomeric PAM peptide that contains both the a1 and a2 motifs. The structure reveals how the PAM peptide forms key interactions simultaneously with two KR2 via the high-affinity lysine isosteres within the a1a2 motifs. Further studies, through combined mutagenesis and functional characterization, show that a2 is a stronger KR2 binder than a1, suggesting that these two motifs may play discrete roles in mediating the final PAM-Plg assembly.


Authors:  
Structure and Function Characterization of the a1a2 Motifs of Streptococcus pyogenes M Protein in Human Plasminogen Binding.,Quek AJH, Mazzitelli BA, Wu G, Leung EWW, Caradoc-Davies TT, Lloyd GJ, Jeevarajah D, Conroy PJ, Sanderson-Smith M, Yuan Y, Ayinuola YA, Castellino FJ, Whisstock JC, Law RHP J Mol Biol. 2019 Jul 8. pii: S0022-2836(19)30424-3. doi:, 10.1016/j.jmb.2019.07.003. PMID:31295457<ref>PMID:31295457</ref>


Description:  
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
[[Category: Unreleased Structures]]
</div>
<div class="pdbe-citations 6og4" style="background-color:#fffaf0;"></div>
== References ==
<references/>
__TOC__
</StructureSection>
[[Category: Large Structures]]
[[Category: Plasmin]]
[[Category: Caradoc-Davies, T T]]
[[Category: Law, R H.P]]
[[Category: Quek, A J]]
[[Category: Whisstock, J C]]
[[Category: Fibrinolysis]]
[[Category: Hydrolase-protein binding complex]]
[[Category: Invasion]]
[[Category: Pam]]
[[Category: Plasminogen]]

Revision as of 09:19, 24 July 2019

plasminogen binding group A streptococcal M proteinplasminogen binding group A streptococcal M protein

Structural highlights

6og4 is a 3 chain structure. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:
Activity:Plasmin, with EC number 3.4.21.7
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Disease

[PLMN_HUMAN] Defects in PLG are the cause of plasminogen deficiency (PLGD) [MIM:217090]. PLGD is characterized by decreased serum plasminogen activity. Two forms of the disorder are distinguished: type 1 deficiency is additionally characterized by decreased plasminogen antigen levels and clinical symptoms, whereas type 2 deficiency, also known as dysplasminogenemia, is characterized by normal, or slightly reduced antigen levels, and absence of clinical manifestations. Plasminogen deficiency type 1 results in markedly impaired extracellular fibrinolysis and chronic mucosal pseudomembranous lesions due to subepithelial fibrin deposition and inflammation. The most common clinical manifestation of type 1 deficiency is ligneous conjunctivitis in which pseudomembranes formation on the palpebral surfaces of the eye progresses to white, yellow-white, or red thick masses with a wood-like consistency that replace the normal mucosa.[1] [2] [3] [4] [5] [6] [7] [8]

Function

[PLMN_HUMAN] Plasmin dissolves the fibrin of blood clots and acts as a proteolytic factor in a variety of other processes including embryonic development, tissue remodeling, tumor invasion, and inflammation. In ovulation, weakens the walls of the Graafian follicle. It activates the urokinase-type plasminogen activator, collagenases and several complement zymogens, such as C1 and C5. Cleavage of fibronectin and laminin leads to cell detachment and apoptosis. Also cleaves fibrin, thrombospondin and von Willebrand factor. Its role in tissue remodeling and tumor invasion may be modulated by CSPG4. Binds to cells.[9] Angiostatin is an angiogenesis inhibitor that blocks neovascularization and growth of experimental primary and metastatic tumors in vivo.[10] [PAM_STRPY] Binds to human plasminogen (and plasmin) via its kringle repeats. Also binds to albumin, immunoglobulin G and fibrinogen. Could provide the bacteria with a mechanism for invasion, as streptococcal-bound plasmin could permit tissue penetration.

Publication Abstract from PubMed

Plasminogen (Plg)-binding M protein (PAM) is a group A streptococcal cell surface receptor that is crucial for bacterial virulence. Previous studies revealed that, by binding to the kringle 2 (KR2) domain of host Plg, the pathogen attains a proteolytic microenvironment on the cell surface that facilitates its dissemination from the primary infection site. Each of the PAM molecules in their dimeric assembly consists of two Plg binding motifs (called the a1 and a2 repeats). To date, the molecular interactions between the a1 repeat and KR2 have been structurally characterized, whereas the role of the a2 repeat is less well defined. Here, we report the 1.7-A x-ray crystal structure of KR2 in complex with a monomeric PAM peptide that contains both the a1 and a2 motifs. The structure reveals how the PAM peptide forms key interactions simultaneously with two KR2 via the high-affinity lysine isosteres within the a1a2 motifs. Further studies, through combined mutagenesis and functional characterization, show that a2 is a stronger KR2 binder than a1, suggesting that these two motifs may play discrete roles in mediating the final PAM-Plg assembly.

Structure and Function Characterization of the a1a2 Motifs of Streptococcus pyogenes M Protein in Human Plasminogen Binding.,Quek AJH, Mazzitelli BA, Wu G, Leung EWW, Caradoc-Davies TT, Lloyd GJ, Jeevarajah D, Conroy PJ, Sanderson-Smith M, Yuan Y, Ayinuola YA, Castellino FJ, Whisstock JC, Law RHP J Mol Biol. 2019 Jul 8. pii: S0022-2836(19)30424-3. doi:, 10.1016/j.jmb.2019.07.003. PMID:31295457[11]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Ichinose A, Espling ES, Takamatsu J, Saito H, Shinmyozu K, Maruyama I, Petersen TE, Davie EW. Two types of abnormal genes for plasminogen in families with a predisposition for thrombosis. Proc Natl Acad Sci U S A. 1991 Jan 1;88(1):115-9. PMID:1986355
  2. Azuma H, Uno Y, Shigekiyo T, Saito S. Congenital plasminogen deficiency caused by a Ser572 to Pro mutation. Blood. 1993 Jul 15;82(2):475-80. PMID:8392398
  3. Miyata T, Iwanaga S, Sakata Y, Aoki N. Plasminogen Tochigi: inactive plasmin resulting from replacement of alanine-600 by threonine in the active site. Proc Natl Acad Sci U S A. 1982 Oct;79(20):6132-6. PMID:6216475
  4. Miyata T, Iwanaga S, Sakata Y, Aoki N, Takamatsu J, Kamiya T. Plasminogens Tochigi II and Nagoya: two additional molecular defects with Ala-600----Thr replacement found in plasmin light chain variants. J Biochem. 1984 Aug;96(2):277-87. PMID:6238949
  5. Kikuchi S, Yamanouchi Y, Li L, Kobayashi K, Ijima H, Miyazaki R, Tsuchiya S, Hamaguchi H. Plasminogen with type-I mutation is polymorphic in the Japanese population. Hum Genet. 1992 Sep-Oct;90(1-2):7-11. PMID:1427790
  6. Schuster V, Mingers AM, Seidenspinner S, Nussgens Z, Pukrop T, Kreth HW. Homozygous mutations in the plasminogen gene of two unrelated girls with ligneous conjunctivitis. Blood. 1997 Aug 1;90(3):958-66. PMID:9242524
  7. Higuchi Y, Furihata K, Ueno I, Ishikawa S, Okumura N, Tozuka M, Sakurai N. Plasminogen Kanagawa-I, a novel missense mutation, is caused by the amino acid substitution G732R. Br J Haematol. 1998 Dec;103(3):867-70. PMID:9858247
  8. Schuster V, Seidenspinner S, Zeitler P, Escher C, Pleyer U, Bernauer W, Stiehm ER, Isenberg S, Seregard S, Olsson T, Mingers AM, Schambeck C, Kreth HW. Compound-heterozygous mutations in the plasminogen gene predispose to the development of ligneous conjunctivitis. Blood. 1999 May 15;93(10):3457-66. PMID:10233898
  9. Rossignol P, Ho-Tin-Noe B, Vranckx R, Bouton MC, Meilhac O, Lijnen HR, Guillin MC, Michel JB, Angles-Cano E. Protease nexin-1 inhibits plasminogen activation-induced apoptosis of adherent cells. J Biol Chem. 2004 Mar 12;279(11):10346-56. Epub 2003 Dec 29. PMID:14699093 doi:10.1074/jbc.M310964200
  10. Rossignol P, Ho-Tin-Noe B, Vranckx R, Bouton MC, Meilhac O, Lijnen HR, Guillin MC, Michel JB, Angles-Cano E. Protease nexin-1 inhibits plasminogen activation-induced apoptosis of adherent cells. J Biol Chem. 2004 Mar 12;279(11):10346-56. Epub 2003 Dec 29. PMID:14699093 doi:10.1074/jbc.M310964200
  11. Quek AJH, Mazzitelli BA, Wu G, Leung EWW, Caradoc-Davies TT, Lloyd GJ, Jeevarajah D, Conroy PJ, Sanderson-Smith M, Yuan Y, Ayinuola YA, Castellino FJ, Whisstock JC, Law RHP. Structure and Function Characterization of the a1a2 Motifs of Streptococcus pyogenes M Protein in Human Plasminogen Binding. J Mol Biol. 2019 Jul 8. pii: S0022-2836(19)30424-3. doi:, 10.1016/j.jmb.2019.07.003. PMID:31295457 doi:http://dx.doi.org/10.1016/j.jmb.2019.07.003

6og4, resolution 1.70Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA