4mxc: Difference between revisions
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
<StructureSection load='4mxc' size='340' side='right'caption='[[4mxc]], [[Resolution|resolution]] 1.63Å' scene=''> | <StructureSection load='4mxc' size='340' side='right'caption='[[4mxc]], [[Resolution|resolution]] 1.63Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[4mxc]] is a 1 chain structure with sequence from [ | <table><tr><td colspan='2'>[[4mxc]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4MXC OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4MXC FirstGlance]. <br> | ||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=DWF:N-(3-FLUORO-4-{[2-({3-[(METHYLSULFONYL)METHYL]PHENYL}AMINO)PYRIMIDIN-4-YL]OXY}PHENYL)-N-(4-FLUOROPHENYL)CYCLOPROPANE-1,1-DICARBOXAMIDE'>DWF</scene | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=DWF:N-(3-FLUORO-4-{[2-({3-[(METHYLSULFONYL)METHYL]PHENYL}AMINO)PYRIMIDIN-4-YL]OXY}PHENYL)-N-(4-FLUOROPHENYL)CYCLOPROPANE-1,1-DICARBOXAMIDE'>DWF</scene></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4mxc FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4mxc OCA], [https://pdbe.org/4mxc PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4mxc RCSB], [https://www.ebi.ac.uk/pdbsum/4mxc PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4mxc ProSAT]</span></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[ | |||
</table> | </table> | ||
== Disease == | == Disease == | ||
[ | [https://www.uniprot.org/uniprot/MET_HUMAN MET_HUMAN] Note=Activation of MET after rearrangement with the TPR gene produces an oncogenic protein. Note=Defects in MET may be associated with gastric cancer. Defects in MET are a cause of hepatocellular carcinoma (HCC) [MIM:[https://omim.org/entry/114550 114550].<ref>PMID:9927037</ref> Defects in MET are a cause of renal cell carcinoma papillary (RCCP) [MIM:[https://omim.org/entry/605074 605074]. It is a subtype of renal cell carcinoma tending to show a tubulo-papillary architecture formed by numerous, irregular, finger-like projections of connective tissue. Renal cell carcinoma is a heterogeneous group of sporadic or hereditary carcinoma derived from cells of the proximal renal tubular epithelium. It is subclassified into common renal cell carcinoma (clear cell, non-papillary carcinoma), papillary renal cell carcinoma, chromophobe renal cell carcinoma, collecting duct carcinoma with medullary carcinoma of the kidney, and unclassified renal cell carcinoma.<ref>PMID:9140397</ref> <ref>PMID:9563489</ref> <ref>PMID:10433944</ref> <ref>PMID:10417759</ref> <ref>PMID:10327054</ref> Note=A common allele in the promoter region of the MET shows genetic association with susceptibility to autism in some families. Functional assays indicate a decrease in MET promoter activity and altered binding of specific transcription factor complexes. Note=MET activating mutations may be involved in the development of a highly malignant, metastatic syndrome known as cancer of unknown primary origin (CUP) or primary occult malignancy. Systemic neoplastic spread is generally a late event in cancer progression. However, in some instances, distant dissemination arises at a very early stage, so that metastases reach clinical relevance before primary lesions. Sometimes, the primary lesions cannot be identified in spite of the progresses in the diagnosis of malignancies.<ref>PMID:20949619</ref> | ||
== Function == | == Function == | ||
[ | [https://www.uniprot.org/uniprot/MET_HUMAN MET_HUMAN] Receptor tyrosine kinase that transduces signals from the extracellular matrix into the cytoplasm by binding to hepatocyte growth factor/HGF ligand. Regulates many physiological processes including proliferation, scattering, morphogenesis and survival. Ligand binding at the cell surface induces autophosphorylation of MET on its intracellular domain that provides docking sites for downstream signaling molecules. Following activation by ligand, interacts with the PI3-kinase subunit PIK3R1, PLCG1, SRC, GRB2, STAT3 or the adapter GAB1. Recruitment of these downstream effectors by MET leads to the activation of several signaling cascades including the RAS-ERK, PI3 kinase-AKT, or PLCgamma-PKC. The RAS-ERK activation is associated with the morphogenetic effects while PI3K/AKT coordinates prosurvival effects. During embryonic development, MET signaling plays a role in gastrulation, development and migration of muscles and neuronal precursors, angiogenesis and kidney formation. In adults, participates in wound healing as well as organ regeneration and tissue remodeling. Promotes also differentiation and proliferation of hematopoietic cells.<ref>PMID:1846706</ref> <ref>PMID:8182137</ref> <ref>PMID:15314156</ref> Acts as a receptor for Listeria internalin inlB, mediating entry of the pathogen into cells.<ref>PMID:1846706</ref> <ref>PMID:8182137</ref> <ref>PMID:15314156</ref> | ||
<div style="background-color:#fffaf0;"> | <div style="background-color:#fffaf0;"> | ||
== Publication Abstract from PubMed == | == Publication Abstract from PubMed == | ||
Line 24: | Line 22: | ||
==See Also== | ==See Also== | ||
*[[Hepatocyte growth factor receptor|Hepatocyte growth factor receptor]] | *[[Hepatocyte growth factor receptor 3D structures|Hepatocyte growth factor receptor 3D structures]] | ||
== References == | == References == | ||
<references/> | <references/> | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
[[Category: | [[Category: Homo sapiens]] | ||
[[Category: Large Structures]] | [[Category: Large Structures]] | ||
[[Category: Chen TT]] | |||
[[Category: Chen | [[Category: Liu QF]] | ||
[[Category: Liu | [[Category: Xu YC]] | ||
[[Category: Xu | |||
Revision as of 13:16, 28 December 2022
Crystal structure of CMET in complex with novel inhibitorCrystal structure of CMET in complex with novel inhibitor
Structural highlights
DiseaseMET_HUMAN Note=Activation of MET after rearrangement with the TPR gene produces an oncogenic protein. Note=Defects in MET may be associated with gastric cancer. Defects in MET are a cause of hepatocellular carcinoma (HCC) [MIM:114550.[1] Defects in MET are a cause of renal cell carcinoma papillary (RCCP) [MIM:605074. It is a subtype of renal cell carcinoma tending to show a tubulo-papillary architecture formed by numerous, irregular, finger-like projections of connective tissue. Renal cell carcinoma is a heterogeneous group of sporadic or hereditary carcinoma derived from cells of the proximal renal tubular epithelium. It is subclassified into common renal cell carcinoma (clear cell, non-papillary carcinoma), papillary renal cell carcinoma, chromophobe renal cell carcinoma, collecting duct carcinoma with medullary carcinoma of the kidney, and unclassified renal cell carcinoma.[2] [3] [4] [5] [6] Note=A common allele in the promoter region of the MET shows genetic association with susceptibility to autism in some families. Functional assays indicate a decrease in MET promoter activity and altered binding of specific transcription factor complexes. Note=MET activating mutations may be involved in the development of a highly malignant, metastatic syndrome known as cancer of unknown primary origin (CUP) or primary occult malignancy. Systemic neoplastic spread is generally a late event in cancer progression. However, in some instances, distant dissemination arises at a very early stage, so that metastases reach clinical relevance before primary lesions. Sometimes, the primary lesions cannot be identified in spite of the progresses in the diagnosis of malignancies.[7] FunctionMET_HUMAN Receptor tyrosine kinase that transduces signals from the extracellular matrix into the cytoplasm by binding to hepatocyte growth factor/HGF ligand. Regulates many physiological processes including proliferation, scattering, morphogenesis and survival. Ligand binding at the cell surface induces autophosphorylation of MET on its intracellular domain that provides docking sites for downstream signaling molecules. Following activation by ligand, interacts with the PI3-kinase subunit PIK3R1, PLCG1, SRC, GRB2, STAT3 or the adapter GAB1. Recruitment of these downstream effectors by MET leads to the activation of several signaling cascades including the RAS-ERK, PI3 kinase-AKT, or PLCgamma-PKC. The RAS-ERK activation is associated with the morphogenetic effects while PI3K/AKT coordinates prosurvival effects. During embryonic development, MET signaling plays a role in gastrulation, development and migration of muscles and neuronal precursors, angiogenesis and kidney formation. In adults, participates in wound healing as well as organ regeneration and tissue remodeling. Promotes also differentiation and proliferation of hematopoietic cells.[8] [9] [10] Acts as a receptor for Listeria internalin inlB, mediating entry of the pathogen into cells.[11] [12] [13] Publication Abstract from PubMedBoth c-Met and VEGFR-2 are important targets for cancer therapies. Here we report a series of potent dual c-Met and VEGFR-2 inhibitors bearing an anilinopyrimidine scaffold. Two novel synthetic protocols were employed for rapid analoguing of the designed molecules for structure-activity relationship (SAR) exploration. Some analogues displayed nanomolar potency against c-Met and VEGFR-2 at enzymatic level. Privileged compounds 3a, 3b, 3g, 3h, and 18a exhibited potent antiproliferative effect against c-Met addictive cell lines with IC50 values ranged from 0.33 to 1.7 muM. In addition, a cocrystal structure of c-Met in complex with 3h has been determined, which reveals the binding mode of c-Met to its inhibitor and helps to interpret the SAR of the analogues. Discovery of Anilinopyrimidines as Dual Inhibitors of c-Met and VEGFR-2: Synthesis, SAR, and Cellular Activity.,Zhan Z, Ai J, Liu Q, Ji Y, Chen T, Xu Y, Geng M, Duan W ACS Med Chem Lett. 2014 Mar 26;5(6):673-8. doi: 10.1021/ml500066m. eCollection, 2014 Jun 12. PMID:24944742[14] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|