4n7n: Difference between revisions
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
<StructureSection load='4n7n' size='340' side='right'caption='[[4n7n]], [[Resolution|resolution]] 2.75Å' scene=''> | <StructureSection load='4n7n' size='340' side='right'caption='[[4n7n]], [[Resolution|resolution]] 2.75Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[4n7n]] is a 12 chain structure with sequence from [ | <table><tr><td colspan='2'>[[4n7n]] is a 12 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4N7N OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4N7N FirstGlance]. <br> | ||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=HEM:PROTOPORPHYRIN+IX+CONTAINING+FE'>HEM</scene> | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=HEM:PROTOPORPHYRIN+IX+CONTAINING+FE'>HEM</scene></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4n7n FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4n7n OCA], [https://pdbe.org/4n7n PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4n7n RCSB], [https://www.ebi.ac.uk/pdbsum/4n7n PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4n7n ProSAT]</span></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[ | |||
</table> | </table> | ||
== Disease == | == Disease == | ||
[ | [https://www.uniprot.org/uniprot/HBA_HUMAN HBA_HUMAN] Defects in HBA1 may be a cause of Heinz body anemias (HEIBAN) [MIM:[https://omim.org/entry/140700 140700]. This is a form of non-spherocytic hemolytic anemia of Dacie type 1. After splenectomy, which has little benefit, basophilic inclusions called Heinz bodies are demonstrable in the erythrocytes. Before splenectomy, diffuse or punctate basophilia may be evident. Most of these cases are probably instances of hemoglobinopathy. The hemoglobin demonstrates heat lability. Heinz bodies are observed also with the Ivemark syndrome (asplenia with cardiovascular anomalies) and with glutathione peroxidase deficiency.<ref>PMID:2833478</ref> Defects in HBA1 are the cause of alpha-thalassemia (A-THAL) [MIM:[https://omim.org/entry/604131 604131]. The thalassemias are the most common monogenic diseases and occur mostly in Mediterranean and Southeast Asian populations. The hallmark of alpha-thalassemia is an imbalance in globin-chain production in the adult HbA molecule. The level of alpha chain production can range from none to very nearly normal levels. Deletion of both copies of each of the two alpha-globin genes causes alpha(0)-thalassemia, also known as homozygous alpha thalassemia. Due to the complete absence of alpha chains, the predominant fetal hemoglobin is a tetramer of gamma-chains (Bart hemoglobin) that has essentially no oxygen carrying capacity. This causes oxygen starvation in the fetal tissues leading to prenatal lethality or early neonatal death. The loss of three alpha genes results in high levels of a tetramer of four beta chains (hemoglobin H), causing a severe and life-threatening anemia known as hemoglobin H disease. Untreated, most patients die in childhood or early adolescence. The loss of two alpha genes results in mild alpha-thalassemia, also known as heterozygous alpha-thalassemia. Affected individuals have small red cells and a mild anemia (microcytosis). If three of the four alpha-globin genes are functional, individuals are completely asymptomatic. Some rare forms of alpha-thalassemia are due to point mutations (non-deletional alpha-thalassemia). The thalassemic phenotype is due to unstable globin alpha chains that are rapidly catabolized prior to formation of the alpha-beta heterotetramers. Note=Alpha(0)-thalassemia is associated with non-immune hydrops fetalis, a generalized edema of the fetus with fluid accumulation in the body cavities due to non-immune causes. Non-immune hydrops fetalis is not a diagnosis in itself but a symptom, a feature of many genetic disorders, and the end-stage of a wide variety of disorders. Defects in HBA1 are the cause of hemoglobin H disease (HBH) [MIM:[https://omim.org/entry/613978 613978]. HBH is a form of alpha-thalassemia due to the loss of three alpha genes. This results in high levels of a tetramer of four beta chains (hemoglobin H), causing a severe and life-threatening anemia. Untreated, most patients die in childhood or early adolescence.<ref>PMID:10569720</ref> | ||
== Function == | == Function == | ||
[ | [https://www.uniprot.org/uniprot/HBA_HUMAN HBA_HUMAN] Involved in oxygen transport from the lung to the various peripheral tissues. | ||
<div style="background-color:#fffaf0;"> | <div style="background-color:#fffaf0;"> | ||
== Publication Abstract from PubMed == | == Publication Abstract from PubMed == | ||
Line 30: | Line 29: | ||
[[Category: Homo sapiens]] | [[Category: Homo sapiens]] | ||
[[Category: Large Structures]] | [[Category: Large Structures]] | ||
[[Category: Park | [[Category: Park SY]] | ||
[[Category: Shibayama | [[Category: Shibayama N]] | ||
[[Category: Sugiyama | [[Category: Sugiyama K]] | ||
Revision as of 11:13, 11 January 2023
Capturing the haemoglobin allosteric transition in a single crystal form; Crystal structure of full-liganded human haemoglobin with phosphate at 2.75 A resolution.Capturing the haemoglobin allosteric transition in a single crystal form; Crystal structure of full-liganded human haemoglobin with phosphate at 2.75 A resolution.
Structural highlights
DiseaseHBA_HUMAN Defects in HBA1 may be a cause of Heinz body anemias (HEIBAN) [MIM:140700. This is a form of non-spherocytic hemolytic anemia of Dacie type 1. After splenectomy, which has little benefit, basophilic inclusions called Heinz bodies are demonstrable in the erythrocytes. Before splenectomy, diffuse or punctate basophilia may be evident. Most of these cases are probably instances of hemoglobinopathy. The hemoglobin demonstrates heat lability. Heinz bodies are observed also with the Ivemark syndrome (asplenia with cardiovascular anomalies) and with glutathione peroxidase deficiency.[1] Defects in HBA1 are the cause of alpha-thalassemia (A-THAL) [MIM:604131. The thalassemias are the most common monogenic diseases and occur mostly in Mediterranean and Southeast Asian populations. The hallmark of alpha-thalassemia is an imbalance in globin-chain production in the adult HbA molecule. The level of alpha chain production can range from none to very nearly normal levels. Deletion of both copies of each of the two alpha-globin genes causes alpha(0)-thalassemia, also known as homozygous alpha thalassemia. Due to the complete absence of alpha chains, the predominant fetal hemoglobin is a tetramer of gamma-chains (Bart hemoglobin) that has essentially no oxygen carrying capacity. This causes oxygen starvation in the fetal tissues leading to prenatal lethality or early neonatal death. The loss of three alpha genes results in high levels of a tetramer of four beta chains (hemoglobin H), causing a severe and life-threatening anemia known as hemoglobin H disease. Untreated, most patients die in childhood or early adolescence. The loss of two alpha genes results in mild alpha-thalassemia, also known as heterozygous alpha-thalassemia. Affected individuals have small red cells and a mild anemia (microcytosis). If three of the four alpha-globin genes are functional, individuals are completely asymptomatic. Some rare forms of alpha-thalassemia are due to point mutations (non-deletional alpha-thalassemia). The thalassemic phenotype is due to unstable globin alpha chains that are rapidly catabolized prior to formation of the alpha-beta heterotetramers. Note=Alpha(0)-thalassemia is associated with non-immune hydrops fetalis, a generalized edema of the fetus with fluid accumulation in the body cavities due to non-immune causes. Non-immune hydrops fetalis is not a diagnosis in itself but a symptom, a feature of many genetic disorders, and the end-stage of a wide variety of disorders. Defects in HBA1 are the cause of hemoglobin H disease (HBH) [MIM:613978. HBH is a form of alpha-thalassemia due to the loss of three alpha genes. This results in high levels of a tetramer of four beta chains (hemoglobin H), causing a severe and life-threatening anemia. Untreated, most patients die in childhood or early adolescence.[2] FunctionHBA_HUMAN Involved in oxygen transport from the lung to the various peripheral tissues. Publication Abstract from PubMedAllostery in many oligomeric proteins has been postulated to occur via a ligand-binding-driven conformational transition from the tense (T) to relaxed (R) state, largely on the basis of the knowledge of the structure and function of hemoglobin, the most thoroughly studied of all allosteric proteins. However, a growing body of evidence suggests that hemoglobin possesses a variety of intermediates between the two end states. As such intermediate forms coexist with the end states in dynamic equilibrium and cannot be individually characterized by conventional techniques, very little is known about their properties and functions. Here we present complete structural and functional snapshots of nine equilibrium conformers of human hemoglobin in the half-liganded and fully liganded states by using a novel combination of X-ray diffraction analysis and microspectrophotometric O2 equilibrium measurements on three isomorphous crystals, each capturing three distinct equilibrium conformers. Notably, the conformational set of this crystal form varies according to shifts in the allosteric equilibrium, reflecting the differences in hemoglobin ligation state and crystallization solution conditions. We find that nine snapshot structures cover the complete conformational space of hemoglobin, ranging from T to R2 (the second relaxed quaternary structure) through R, with various relaxed intermediate forms between R and R2. Moreover, we find a previously unidentified intermediate conformer, between T and R, with an intermediate O2 affinity, sought by many research groups over a period of decades. These findings reveal a comprehensive picture of the equilibrium conformers and transition pathway for human hemoglobin. Capturing the Hemoglobin Allosteric Transition in a Single Crystal Form.,Shibayama N, Sugiyama K, Tame JR, Park SY J Am Chem Soc. 2014 Mar 24. PMID:24635037[3] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|