6nqd: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
'''Unreleased structure'''


The entry 6nqd is ON HOLD until Paper Publication
==Cryo-EM structure of T/F100 SOSIP.664 HIV-1 Env trimer in complex with 8ANC195 Fab==
<StructureSection load='6nqd' size='340' side='right'  caption='[[6nqd]], [[Resolution|resolution]] 3.90&Aring;' scene=''>
== Structural highlights ==
<table><tr><td colspan='2'>[[6nqd]] is a 12 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6NQD OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6NQD FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=BMA:BETA-D-MANNOSE'>BMA</scene>, <scene name='pdbligand=MAN:ALPHA-D-MANNOSE'>MAN</scene>, <scene name='pdbligand=NAG:N-ACETYL-D-GLUCOSAMINE'>NAG</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6nqd FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6nqd OCA], [http://pdbe.org/6nqd PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6nqd RCSB], [http://www.ebi.ac.uk/pdbsum/6nqd PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6nqd ProSAT]</span></td></tr>
</table>
== Function ==
[[http://www.uniprot.org/uniprot/A0A140EMT3_9HIV1 A0A140EMT3_9HIV1]] Envelope glycoprotein gp160: Oligomerizes in the host endoplasmic reticulum into predominantly trimers. In a second time, gp160 transits in the host Golgi, where glycosylation is completed. The precursor is then proteolytically cleaved in the trans-Golgi and thereby activated by cellular furin or furin-like proteases to produce gp120 and gp41.[HAMAP-Rule:MF_04083]  Surface protein gp120: Attaches the virus to the host lymphoid cell by binding to the primary receptor CD4. This interaction induces a structural rearrangement creating a high affinity binding site for a chemokine coreceptor like CXCR4 and/or CCR5. Acts as a ligand for CD209/DC-SIGN and CLEC4M/DC-SIGNR, which are respectively found on dendritic cells (DCs), and on endothelial cells of liver sinusoids and lymph node sinuses. These interactions allow capture of viral particles at mucosal surfaces by these cells and subsequent transmission to permissive cells. HIV subverts the migration properties of dendritic cells to gain access to CD4+ T-cells in lymph nodes. Virus transmission to permissive T-cells occurs either in trans (without DCs infection, through viral capture and transmission), or in cis (following DCs productive infection, through the usual CD4-gp120 interaction), thereby inducing a robust infection. In trans infection, bound virions remain infectious over days and it is proposed that they are not degraded, but protected in non-lysosomal acidic organelles within the DCs close to the cell membrane thus contributing to the viral infectious potential during DCs' migration from the periphery to the lymphoid tissues. On arrival at lymphoid tissues, intact virions recycle back to DCs' cell surface allowing virus transmission to CD4+ T-cells.[HAMAP-Rule:MF_04083] Transmembrane protein gp41: Acts as a class I viral fusion protein. Under the current model, the protein has at least 3 conformational states: pre-fusion native state, pre-hairpin intermediate state, and post-fusion hairpin state. During fusion of viral and target intracellular membranes, the coiled coil regions (heptad repeats) assume a trimer-of-hairpins structure, positioning the fusion peptide in close proximity to the C-terminal region of the ectodomain. The formation of this structure appears to drive apposition and subsequent fusion of viral and target cell membranes. Complete fusion occurs in host cell endosomes and is dynamin-dependent, however some lipid transfer might occur at the plasma membrane. The virus undergoes clathrin-dependent internalization long before endosomal fusion, thus minimizing the surface exposure of conserved viral epitopes during fusion and reducing the efficacy of inhibitors targeting these epitopes. Membranes fusion leads to delivery of the nucleocapsid into the cytoplasm.[HAMAP-Rule:MF_04083]
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
The envelope protein of human immunodeficiency virus-1 (HIV-1) and its fusion peptide are essential for cell entry and vaccine design. Here, we describe the 3.9-A resolution structure of an envelope protein trimer from a very early transmitted founder virus (CRF01_AE T/F100) complexed with Fab from the broadly neutralizing antibody (bNAb) 8ANC195. The overall T/F100 trimer structure is similar to other reported "closed" state prefusion trimer structures. In contrast, the fusion peptide, which is exposed to solvent in reported closed structures, is sequestered (buried) in the hydrophobic core of the T/F100 trimer. A buried conformation has previously been observed in "open" state structures formed after CD4 receptor binding. The T/F100 trimer binds poorly to bNAbs including the fusion peptide-specific bNAbs PGT151 and VRC34.01. The T/F100 structure might represent a prefusion state, intermediate between the closed and open states. These observations are relevant to mechanisms of HIV-1 transmission and vaccine design.


Authors:  
A sequestered fusion peptide in the structure of an HIV-1 transmitted founder envelope trimer.,Ananthaswamy N, Fang Q, AlSalmi W, Jain S, Chen Z, Klose T, Sun Y, Liu Y, Mahalingam M, Chand S, Tovanabutra S, Robb ML, Rossmann MG, Rao VB Nat Commun. 2019 Feb 20;10(1):873. doi: 10.1038/s41467-019-08825-7. PMID:30787293<ref>PMID:30787293</ref>


Description:  
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
[[Category: Unreleased Structures]]
</div>
<div class="pdbe-citations 6nqd" style="background-color:#fffaf0;"></div>
== References ==
<references/>
__TOC__
</StructureSection>
[[Category: Fang, Q]]
[[Category: Rossmann, M G]]
[[Category: Env]]
[[Category: Hiv-1]]
[[Category: Trimer]]
[[Category: Viral protein-immune system complex]]

Revision as of 10:36, 6 March 2019

Cryo-EM structure of T/F100 SOSIP.664 HIV-1 Env trimer in complex with 8ANC195 FabCryo-EM structure of T/F100 SOSIP.664 HIV-1 Env trimer in complex with 8ANC195 Fab

Structural highlights

6nqd is a 12 chain structure. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:, ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

[A0A140EMT3_9HIV1] Envelope glycoprotein gp160: Oligomerizes in the host endoplasmic reticulum into predominantly trimers. In a second time, gp160 transits in the host Golgi, where glycosylation is completed. The precursor is then proteolytically cleaved in the trans-Golgi and thereby activated by cellular furin or furin-like proteases to produce gp120 and gp41.[HAMAP-Rule:MF_04083] Surface protein gp120: Attaches the virus to the host lymphoid cell by binding to the primary receptor CD4. This interaction induces a structural rearrangement creating a high affinity binding site for a chemokine coreceptor like CXCR4 and/or CCR5. Acts as a ligand for CD209/DC-SIGN and CLEC4M/DC-SIGNR, which are respectively found on dendritic cells (DCs), and on endothelial cells of liver sinusoids and lymph node sinuses. These interactions allow capture of viral particles at mucosal surfaces by these cells and subsequent transmission to permissive cells. HIV subverts the migration properties of dendritic cells to gain access to CD4+ T-cells in lymph nodes. Virus transmission to permissive T-cells occurs either in trans (without DCs infection, through viral capture and transmission), or in cis (following DCs productive infection, through the usual CD4-gp120 interaction), thereby inducing a robust infection. In trans infection, bound virions remain infectious over days and it is proposed that they are not degraded, but protected in non-lysosomal acidic organelles within the DCs close to the cell membrane thus contributing to the viral infectious potential during DCs' migration from the periphery to the lymphoid tissues. On arrival at lymphoid tissues, intact virions recycle back to DCs' cell surface allowing virus transmission to CD4+ T-cells.[HAMAP-Rule:MF_04083] Transmembrane protein gp41: Acts as a class I viral fusion protein. Under the current model, the protein has at least 3 conformational states: pre-fusion native state, pre-hairpin intermediate state, and post-fusion hairpin state. During fusion of viral and target intracellular membranes, the coiled coil regions (heptad repeats) assume a trimer-of-hairpins structure, positioning the fusion peptide in close proximity to the C-terminal region of the ectodomain. The formation of this structure appears to drive apposition and subsequent fusion of viral and target cell membranes. Complete fusion occurs in host cell endosomes and is dynamin-dependent, however some lipid transfer might occur at the plasma membrane. The virus undergoes clathrin-dependent internalization long before endosomal fusion, thus minimizing the surface exposure of conserved viral epitopes during fusion and reducing the efficacy of inhibitors targeting these epitopes. Membranes fusion leads to delivery of the nucleocapsid into the cytoplasm.[HAMAP-Rule:MF_04083]

Publication Abstract from PubMed

The envelope protein of human immunodeficiency virus-1 (HIV-1) and its fusion peptide are essential for cell entry and vaccine design. Here, we describe the 3.9-A resolution structure of an envelope protein trimer from a very early transmitted founder virus (CRF01_AE T/F100) complexed with Fab from the broadly neutralizing antibody (bNAb) 8ANC195. The overall T/F100 trimer structure is similar to other reported "closed" state prefusion trimer structures. In contrast, the fusion peptide, which is exposed to solvent in reported closed structures, is sequestered (buried) in the hydrophobic core of the T/F100 trimer. A buried conformation has previously been observed in "open" state structures formed after CD4 receptor binding. The T/F100 trimer binds poorly to bNAbs including the fusion peptide-specific bNAbs PGT151 and VRC34.01. The T/F100 structure might represent a prefusion state, intermediate between the closed and open states. These observations are relevant to mechanisms of HIV-1 transmission and vaccine design.

A sequestered fusion peptide in the structure of an HIV-1 transmitted founder envelope trimer.,Ananthaswamy N, Fang Q, AlSalmi W, Jain S, Chen Z, Klose T, Sun Y, Liu Y, Mahalingam M, Chand S, Tovanabutra S, Robb ML, Rossmann MG, Rao VB Nat Commun. 2019 Feb 20;10(1):873. doi: 10.1038/s41467-019-08825-7. PMID:30787293[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Ananthaswamy N, Fang Q, AlSalmi W, Jain S, Chen Z, Klose T, Sun Y, Liu Y, Mahalingam M, Chand S, Tovanabutra S, Robb ML, Rossmann MG, Rao VB. A sequestered fusion peptide in the structure of an HIV-1 transmitted founder envelope trimer. Nat Commun. 2019 Feb 20;10(1):873. doi: 10.1038/s41467-019-08825-7. PMID:30787293 doi:http://dx.doi.org/10.1038/s41467-019-08825-7

6nqd, resolution 3.90Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA