3fwb: Difference between revisions

No edit summary
No edit summary
Line 1: Line 1:


==Sac3:Sus1:Cdc31 complex==
==Sac3:Sus1:Cdc31 complex==
<StructureSection load='3fwb' size='340' side='right' caption='[[3fwb]], [[Resolution|resolution]] 2.50&Aring;' scene=''>
<StructureSection load='3fwb' size='340' side='right'caption='[[3fwb]], [[Resolution|resolution]] 2.50&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[3fwb]] is a 3 chain structure with sequence from [http://en.wikipedia.org/wiki/Atcc_18824 Atcc 18824]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3FWB OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3FWB FirstGlance]. <br>
<table><tr><td colspan='2'>[[3fwb]] is a 3 chain structure with sequence from [https://en.wikipedia.org/wiki/Atcc_18824 Atcc 18824]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3FWB OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3FWB FirstGlance]. <br>
</td></tr><tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[3fwc|3fwc]]</td></tr>
</td></tr><tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[3fwc|3fwc]]</div></td></tr>
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">CDC31, DSK1, YOR257W ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=4932 ATCC 18824]), LEP1, SAC3, YD8358.13, YDR159W ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=4932 ATCC 18824]), SUS1, YBR111W-A ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=4932 ATCC 18824])</td></tr>
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">CDC31, DSK1, YOR257W ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=4932 ATCC 18824]), LEP1, SAC3, YD8358.13, YDR159W ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=4932 ATCC 18824]), SUS1, YBR111W-A ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=4932 ATCC 18824])</td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3fwb FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3fwb OCA], [http://pdbe.org/3fwb PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=3fwb RCSB], [http://www.ebi.ac.uk/pdbsum/3fwb PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=3fwb ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3fwb FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3fwb OCA], [https://pdbe.org/3fwb PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3fwb RCSB], [https://www.ebi.ac.uk/pdbsum/3fwb PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3fwb ProSAT]</span></td></tr>
</table>
</table>
== Function ==
== Function ==
[[http://www.uniprot.org/uniprot/CDC31_YEAST CDC31_YEAST]] Functions as a component of the nuclear pore complex (NPC) and the spindle pole body (SPB) half-bridge. At the SPB, it is recruited by KAR1 and MPS3 to the SPB half-bridge and involved in the initial steps of SPB duplication. It probably plays a similar role in de novo assembly of NPCs at the nuclear envelope. Also involved in connection with the protein kinase KIC1 in the maintenance of cell morphology and integrity.<ref>PMID:8188750</ref> <ref>PMID:8070654</ref> <ref>PMID:9813095</ref> <ref>PMID:11156974</ref> <ref>PMID:12486115</ref> <ref>PMID:14504268</ref>  [[http://www.uniprot.org/uniprot/SUS1_YEAST SUS1_YEAST]] Involved in mRNA export coupled transcription activation by association with both the TREX-2 and the SAGA complexes. The transcription regulatory histone acetylation (HAT) complex SAGA is involved in RNA polymerase II-dependent regulation of approximately 10% of yeast genes. At the promoters, SAGA is required for recruitment of the basal transcription machinery. It influences RNA polymerase II transcriptional activity through different activities such as TBP interaction (SPT3, SPT8 and SPT20) and promoter selectivity, interaction with transcription activators (GCN5, ADA2, ADA3 and TRA1), and chromatin modification through histone acetylation (GCN5) and deubiquitination (UBP8). SUS1 forms a distinct functional SAGA module with UBP8, SGF11 and SGF73 required for deubiquitination of H2B and for the maintenance of steady-state H3 methylation levels. The TREX-2 complex functions in docking export-competent ribonucleoprotein particles (mRNPs) to the nuclear entrance of the nuclear pore complex (nuclear basket), by association with components of the nuclear mRNA export machinery (MEX67-MTR2 and SUB2) in the nucleoplasm and the nucleoporin NUP1 at the nuclear basket. TREX-2 participates in mRNA export and accurate chromatin positioning in the nucleus by tethering genes to the nuclear periphery. SUS1 has also a role in mRNP biogenesis and maintenance of genome integrity through preventing RNA-mediated genome instability. Finally SUS1 has a role in response to DNA damage induced by methyl methane sulfonate (MMS) and replication arrest induced by hydroxyurea.<ref>PMID:15311284</ref> <ref>PMID:16510898</ref> <ref>PMID:16855026</ref> <ref>PMID:16760982</ref> <ref>PMID:18923079</ref> <ref>PMID:18667528</ref> <ref>PMID:18003937</ref>  [[http://www.uniprot.org/uniprot/SAC3_YEAST SAC3_YEAST]] Component of the SAC3-THP1 complex, which functions in transcription-coupled mRNA export from the nucleus to the cytoplasm. SAC3-THP1 functions in docking export-competent ribonucleoprotein particles (mRNPs) to the nuclear entrance of the nuclear pore complex (nuclear basket), by association with components of the nuclear mRNA export machinery (MEX67-MTR2 and SUB2) in the nucleoplasm and the nucleoporin NUP1 at the nuclear basket.<ref>PMID:12411502</ref> <ref>PMID:12702719</ref>   
[[https://www.uniprot.org/uniprot/CDC31_YEAST CDC31_YEAST]] Functions as a component of the nuclear pore complex (NPC) and the spindle pole body (SPB) half-bridge. At the SPB, it is recruited by KAR1 and MPS3 to the SPB half-bridge and involved in the initial steps of SPB duplication. It probably plays a similar role in de novo assembly of NPCs at the nuclear envelope. Also involved in connection with the protein kinase KIC1 in the maintenance of cell morphology and integrity.<ref>PMID:8188750</ref> <ref>PMID:8070654</ref> <ref>PMID:9813095</ref> <ref>PMID:11156974</ref> <ref>PMID:12486115</ref> <ref>PMID:14504268</ref>  [[https://www.uniprot.org/uniprot/SUS1_YEAST SUS1_YEAST]] Involved in mRNA export coupled transcription activation by association with both the TREX-2 and the SAGA complexes. The transcription regulatory histone acetylation (HAT) complex SAGA is involved in RNA polymerase II-dependent regulation of approximately 10% of yeast genes. At the promoters, SAGA is required for recruitment of the basal transcription machinery. It influences RNA polymerase II transcriptional activity through different activities such as TBP interaction (SPT3, SPT8 and SPT20) and promoter selectivity, interaction with transcription activators (GCN5, ADA2, ADA3 and TRA1), and chromatin modification through histone acetylation (GCN5) and deubiquitination (UBP8). SUS1 forms a distinct functional SAGA module with UBP8, SGF11 and SGF73 required for deubiquitination of H2B and for the maintenance of steady-state H3 methylation levels. The TREX-2 complex functions in docking export-competent ribonucleoprotein particles (mRNPs) to the nuclear entrance of the nuclear pore complex (nuclear basket), by association with components of the nuclear mRNA export machinery (MEX67-MTR2 and SUB2) in the nucleoplasm and the nucleoporin NUP1 at the nuclear basket. TREX-2 participates in mRNA export and accurate chromatin positioning in the nucleus by tethering genes to the nuclear periphery. SUS1 has also a role in mRNP biogenesis and maintenance of genome integrity through preventing RNA-mediated genome instability. Finally SUS1 has a role in response to DNA damage induced by methyl methane sulfonate (MMS) and replication arrest induced by hydroxyurea.<ref>PMID:15311284</ref> <ref>PMID:16510898</ref> <ref>PMID:16855026</ref> <ref>PMID:16760982</ref> <ref>PMID:18923079</ref> <ref>PMID:18667528</ref> <ref>PMID:18003937</ref>  [[https://www.uniprot.org/uniprot/SAC3_YEAST SAC3_YEAST]] Component of the SAC3-THP1 complex, which functions in transcription-coupled mRNA export from the nucleus to the cytoplasm. SAC3-THP1 functions in docking export-competent ribonucleoprotein particles (mRNPs) to the nuclear entrance of the nuclear pore complex (nuclear basket), by association with components of the nuclear mRNA export machinery (MEX67-MTR2 and SUB2) in the nucleoplasm and the nucleoporin NUP1 at the nuclear basket.<ref>PMID:12411502</ref> <ref>PMID:12702719</ref>   
== Evolutionary Conservation ==
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
[[Image:Consurf_key_small.gif|200px|right]]
Line 31: Line 31:


==See Also==
==See Also==
*[[Nucleoporin|Nucleoporin]]
*[[Nucleoporin 3D structures|Nucleoporin 3D structures]]
== References ==
== References ==
<references/>
<references/>
Line 37: Line 37:
</StructureSection>
</StructureSection>
[[Category: Atcc 18824]]
[[Category: Atcc 18824]]
[[Category: Large Structures]]
[[Category: Jani, D]]
[[Category: Jani, D]]
[[Category: Stewart, M]]
[[Category: Stewart, M]]

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA