3ehf: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
==Crystal structure of DesKC in complex with AMP-PCP== | ==Crystal structure of DesKC in complex with AMP-PCP== | ||
<StructureSection load='3ehf' size='340' side='right' caption='[[3ehf]], [[Resolution|resolution]] 3.10Å' scene=''> | <StructureSection load='3ehf' size='340' side='right'caption='[[3ehf]], [[Resolution|resolution]] 3.10Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[3ehf]] is a 4 chain structure with sequence from [ | <table><tr><td colspan='2'>[[3ehf]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/"vibrio_subtilis"_ehrenberg_1835 "vibrio subtilis" ehrenberg 1835]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3EHF OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3EHF FirstGlance]. <br> | ||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=ACP:PHOSPHOMETHYLPHOSPHONIC+ACID+ADENYLATE+ESTER'>ACP</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr> | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ACP:PHOSPHOMETHYLPHOSPHONIC+ACID+ADENYLATE+ESTER'>ACP</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr> | ||
<tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=MSE:SELENOMETHIONINE'>MSE</scene></td></tr> | <tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=MSE:SELENOMETHIONINE'>MSE</scene></td></tr> | ||
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[3ehg|3ehg]], [[3ehh|3ehh]], [[3ehj|3ehj]]</td></tr> | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[3ehg|3ehg]], [[3ehh|3ehh]], [[3ehj|3ehj]]</div></td></tr> | ||
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">yocF ([ | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">yocF ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=1423 "Vibrio subtilis" Ehrenberg 1835])</td></tr> | ||
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[ | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[https://en.wikipedia.org/wiki/Histidine_kinase Histidine kinase], with EC number [https://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.13.3 2.7.13.3] </span></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[ | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3ehf FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3ehf OCA], [https://pdbe.org/3ehf PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3ehf RCSB], [https://www.ebi.ac.uk/pdbsum/3ehf PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3ehf ProSAT]</span></td></tr> | ||
</table> | </table> | ||
== Function == | == Function == | ||
[[ | [[https://www.uniprot.org/uniprot/DESK_BACSU DESK_BACSU]] Member of the two-component regulatory system DesR/DesK, responsible for cold induction of the des gene coding for the Delta5 acyl-lipid desaturase. Acts as a sensor of the membrane fluidity. Probably activates DesR by phosphorylation.<ref>PMID:11285232</ref> <ref>PMID:11717295</ref> <ref>PMID:12207704</ref> <ref>PMID:14734164</ref> <ref>PMID:15090506</ref> | ||
== Evolutionary Conservation == | == Evolutionary Conservation == | ||
[[Image:Consurf_key_small.gif|200px|right]] | [[Image:Consurf_key_small.gif|200px|right]] | ||
Line 38: | Line 38: | ||
[[Category: Vibrio subtilis ehrenberg 1835]] | [[Category: Vibrio subtilis ehrenberg 1835]] | ||
[[Category: Histidine kinase]] | [[Category: Histidine kinase]] | ||
[[Category: Large Structures]] | |||
[[Category: Albanesi, D]] | [[Category: Albanesi, D]] | ||
[[Category: Alzari, P M]] | [[Category: Alzari, P M]] |
Revision as of 14:49, 16 February 2022
Crystal structure of DesKC in complex with AMP-PCPCrystal structure of DesKC in complex with AMP-PCP
Structural highlights
Function[DESK_BACSU] Member of the two-component regulatory system DesR/DesK, responsible for cold induction of the des gene coding for the Delta5 acyl-lipid desaturase. Acts as a sensor of the membrane fluidity. Probably activates DesR by phosphorylation.[1] [2] [3] [4] [5] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedTemperature sensing is essential for the survival of living cells. A major challenge is to understand how a biological thermometer processes thermal information to optimize cellular functions. Using structural and biochemical approaches, we show that the thermosensitive histidine kinase, DesK, from Bacillus subtilis is cold-activated through specific interhelical rearrangements in its central four-helix bundle domain. As revealed by the crystal structures of DesK in different functional states, the plasticity of this helical domain influences the catalytic activities of the protein, either by modifying the mobility of the ATP-binding domains for autokinase activity or by modulating binding of the cognate response regulator to sustain the phosphotransferase and phosphatase activities. The structural and biochemical data suggest a model in which the transmembrane sensor domain of DesK promotes these structural changes through conformational signals transmitted by the membrane-connecting two-helical coiled-coil, ultimately controlling the alternation between output autokinase and phosphatase activities. The structural comparison of the different DesK variants indicates that incoming signals can take the form of helix rotations and asymmetric helical bends similar to those reported for other sensing systems, suggesting that a similar switching mechanism could be operational in a wide range of sensor histidine kinases. Structural plasticity and catalysis regulation of a thermosensor histidine kinase.,Albanesi D, Martin M, Trajtenberg F, Mansilla MC, Haouz A, Alzari PM, de Mendoza D, Buschiazzo A Proc Natl Acad Sci U S A. 2009 Sep 22;106(38):16185-90. Epub 2009 Sep 4. PMID:19805278[6] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|