6daf: Difference between revisions
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
<StructureSection load='6daf' size='340' side='right' caption='[[6daf]], [[Resolution|resolution]] 2.40Å' scene=''> | <StructureSection load='6daf' size='340' side='right' caption='[[6daf]], [[Resolution|resolution]] 2.40Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[6daf]] is a 4 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6DAF OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6DAF FirstGlance]. <br> | <table><tr><td colspan='2'>[[6daf]] is a 4 chain structure with sequence from [http://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6DAF OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6DAF FirstGlance]. <br> | ||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene></td></tr> | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene></td></tr> | ||
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">CALM1, CALM, CAM, CAM1 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN]), CACNA1C, CACH2, CACN2, CACNL1A1, CCHL1A1 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6daf FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6daf OCA], [http://pdbe.org/6daf PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6daf RCSB], [http://www.ebi.ac.uk/pdbsum/6daf PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6daf ProSAT]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6daf FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6daf OCA], [http://pdbe.org/6daf PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6daf RCSB], [http://www.ebi.ac.uk/pdbsum/6daf PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6daf ProSAT]</span></td></tr> | ||
</table> | </table> | ||
Line 11: | Line 12: | ||
== Function == | == Function == | ||
[[http://www.uniprot.org/uniprot/CALM1_HUMAN CALM1_HUMAN]] Calmodulin mediates the control of a large number of enzymes, ion channels, aquaporins and other proteins through calcium-binding. Among the enzymes to be stimulated by the calmodulin-calcium complex are a number of protein kinases and phosphatases. Together with CCP110 and centrin, is involved in a genetic pathway that regulates the centrosome cycle and progression through cytokinesis (PubMed:16760425). Mediates calcium-dependent inactivation of CACNA1C (PubMed:26969752). Positively regulates calcium-activated potassium channel activity of KCNN2 (PubMed:27165696).<ref>PMID:16760425</ref> <ref>PMID:23893133</ref> <ref>PMID:26969752</ref> <ref>PMID:27165696</ref> [[http://www.uniprot.org/uniprot/CAC1C_HUMAN CAC1C_HUMAN]] Voltage-sensitive calcium channels (VSCC) mediate the entry of calcium ions into excitable cells and are also involved in a variety of calcium-dependent processes, including muscle contraction, hormone or neurotransmitter release, gene expression, cell motility, cell division and cell death. The isoform alpha-1C gives rise to L-type calcium currents. Long-lasting (L-type) calcium channels belong to the 'high-voltage activated' (HVA) group. They are blocked by dihydropyridines (DHP), phenylalkylamines, benzothiazepines, and by omega-agatoxin-IIIA (omega-Aga-IIIA). They are however insensitive to omega-conotoxin-GVIA (omega-CTx-GVIA) and omega-agatoxin-IVA (omega-Aga-IVA). Calcium channels containing the alpha-1C subunit play an important role in excitation-contraction coupling in the heart. The various isoforms display marked differences in the sensitivity to DHP compounds. Binding of calmodulin or CABP1 at the same regulatory sites results in an opposit effects on the channel function.<ref>PMID:8392192</ref> <ref>PMID:7737988</ref> <ref>PMID:9013606</ref> <ref>PMID:9607315</ref> <ref>PMID:12176756</ref> <ref>PMID:17071743</ref> | [[http://www.uniprot.org/uniprot/CALM1_HUMAN CALM1_HUMAN]] Calmodulin mediates the control of a large number of enzymes, ion channels, aquaporins and other proteins through calcium-binding. Among the enzymes to be stimulated by the calmodulin-calcium complex are a number of protein kinases and phosphatases. Together with CCP110 and centrin, is involved in a genetic pathway that regulates the centrosome cycle and progression through cytokinesis (PubMed:16760425). Mediates calcium-dependent inactivation of CACNA1C (PubMed:26969752). Positively regulates calcium-activated potassium channel activity of KCNN2 (PubMed:27165696).<ref>PMID:16760425</ref> <ref>PMID:23893133</ref> <ref>PMID:26969752</ref> <ref>PMID:27165696</ref> [[http://www.uniprot.org/uniprot/CAC1C_HUMAN CAC1C_HUMAN]] Voltage-sensitive calcium channels (VSCC) mediate the entry of calcium ions into excitable cells and are also involved in a variety of calcium-dependent processes, including muscle contraction, hormone or neurotransmitter release, gene expression, cell motility, cell division and cell death. The isoform alpha-1C gives rise to L-type calcium currents. Long-lasting (L-type) calcium channels belong to the 'high-voltage activated' (HVA) group. They are blocked by dihydropyridines (DHP), phenylalkylamines, benzothiazepines, and by omega-agatoxin-IIIA (omega-Aga-IIIA). They are however insensitive to omega-conotoxin-GVIA (omega-CTx-GVIA) and omega-agatoxin-IVA (omega-Aga-IVA). Calcium channels containing the alpha-1C subunit play an important role in excitation-contraction coupling in the heart. The various isoforms display marked differences in the sensitivity to DHP compounds. Binding of calmodulin or CABP1 at the same regulatory sites results in an opposit effects on the channel function.<ref>PMID:8392192</ref> <ref>PMID:7737988</ref> <ref>PMID:9013606</ref> <ref>PMID:9607315</ref> <ref>PMID:12176756</ref> <ref>PMID:17071743</ref> | ||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
Calmodulin (CaM) represents one of the most conserved proteins among eukaryotes and is known to bind and modulate more than a 100 targets. Recently, several disease-associated mutations have been identified in the CALM genes that are causative of severe cardiac arrhythmia syndromes. Although several mutations have been shown to affect the function of various cardiac ion channels, direct structural insights into any CaM disease mutation have been lacking. Here we report a crystallographic and NMR investigation of several disease mutant CaMs, linked to long-QT syndrome, in complex with the IQ domain of the cardiac voltage-gated calcium channel (CaV1.2). Surprisingly, two mutants (D95V, N97I) cause a major distortion of the C-terminal lobe, resulting in a pathological conformation not reported before. These structural changes result in altered interactions with the CaV1.2 IQ domain. Another mutation (N97S) reduces the affinity for Ca(2+) by introducing strain in EF hand 3. A fourth mutant (F141L) shows structural changes in the Ca(2+)-free state that increase the affinity for the IQ domain. These results thus show that different mechanisms underlie the ability of CaM disease mutations to affect Ca(2+)-dependent inactivation of the voltage-gated calcium channel. | |||
Arrhythmia mutations in calmodulin cause conformational changes that affect interactions with the cardiac voltage-gated calcium channel.,Wang K, Holt C, Lu J, Brohus M, Larsen KT, Overgaard MT, Wimmer R, Van Petegem F Proc Natl Acad Sci U S A. 2018 Oct 22. pii: 1808733115. doi:, 10.1073/pnas.1808733115. PMID:30348784<ref>PMID:30348784</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 6daf" style="background-color:#fffaf0;"></div> | |||
== References == | == References == | ||
<references/> | <references/> | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
[[Category: Human]] | |||
[[Category: Petegem, F Van]] | [[Category: Petegem, F Van]] | ||
[[Category: Wang, K]] | [[Category: Wang, K]] |
Revision as of 10:13, 31 October 2018
2.4 Angstrom crystal structure of the F141L Ca/CaM:CaV1.2 IQ domain complex2.4 Angstrom crystal structure of the F141L Ca/CaM:CaV1.2 IQ domain complex
Structural highlights
Disease[CALM1_HUMAN] The disease is caused by mutations affecting the gene represented in this entry. Mutations in CALM1 are the cause of CPVT4. The disease is caused by mutations affecting the gene represented in this entry. Mutations in CALM1 are the cause of LQT14. [CAC1C_HUMAN] Defects in CACNA1C are the cause of Timothy syndrome (TS) [MIM:601005]. TS is a disorder characterized by multiorgan dysfunction including lethal arrhythmias, webbing of fingers and toes, congenital heart disease, immune deficiency, intermittent hypoglycemia, cognitive abnormalities and autism.[1] [2] Defects in CACNA1C are the cause of Brugada syndrome type 3 (BRGDA3) [MIM:611875]. A heart disease characterized by the association of Brugada syndrome with shortened QT intervals. Brugada syndrome is a tachyarrhythmia characterized by right bundle branch block and ST segment elevation on an electrocardiogram (ECG). It can cause the ventricles to beat so fast that the blood is prevented from circulating efficiently in the body. When this situation occurs (called ventricular fibrillation), the individual will faint and may die in a few minutes if the heart is not reset.[3] Function[CALM1_HUMAN] Calmodulin mediates the control of a large number of enzymes, ion channels, aquaporins and other proteins through calcium-binding. Among the enzymes to be stimulated by the calmodulin-calcium complex are a number of protein kinases and phosphatases. Together with CCP110 and centrin, is involved in a genetic pathway that regulates the centrosome cycle and progression through cytokinesis (PubMed:16760425). Mediates calcium-dependent inactivation of CACNA1C (PubMed:26969752). Positively regulates calcium-activated potassium channel activity of KCNN2 (PubMed:27165696).[4] [5] [6] [7] [CAC1C_HUMAN] Voltage-sensitive calcium channels (VSCC) mediate the entry of calcium ions into excitable cells and are also involved in a variety of calcium-dependent processes, including muscle contraction, hormone or neurotransmitter release, gene expression, cell motility, cell division and cell death. The isoform alpha-1C gives rise to L-type calcium currents. Long-lasting (L-type) calcium channels belong to the 'high-voltage activated' (HVA) group. They are blocked by dihydropyridines (DHP), phenylalkylamines, benzothiazepines, and by omega-agatoxin-IIIA (omega-Aga-IIIA). They are however insensitive to omega-conotoxin-GVIA (omega-CTx-GVIA) and omega-agatoxin-IVA (omega-Aga-IVA). Calcium channels containing the alpha-1C subunit play an important role in excitation-contraction coupling in the heart. The various isoforms display marked differences in the sensitivity to DHP compounds. Binding of calmodulin or CABP1 at the same regulatory sites results in an opposit effects on the channel function.[8] [9] [10] [11] [12] [13] Publication Abstract from PubMedCalmodulin (CaM) represents one of the most conserved proteins among eukaryotes and is known to bind and modulate more than a 100 targets. Recently, several disease-associated mutations have been identified in the CALM genes that are causative of severe cardiac arrhythmia syndromes. Although several mutations have been shown to affect the function of various cardiac ion channels, direct structural insights into any CaM disease mutation have been lacking. Here we report a crystallographic and NMR investigation of several disease mutant CaMs, linked to long-QT syndrome, in complex with the IQ domain of the cardiac voltage-gated calcium channel (CaV1.2). Surprisingly, two mutants (D95V, N97I) cause a major distortion of the C-terminal lobe, resulting in a pathological conformation not reported before. These structural changes result in altered interactions with the CaV1.2 IQ domain. Another mutation (N97S) reduces the affinity for Ca(2+) by introducing strain in EF hand 3. A fourth mutant (F141L) shows structural changes in the Ca(2+)-free state that increase the affinity for the IQ domain. These results thus show that different mechanisms underlie the ability of CaM disease mutations to affect Ca(2+)-dependent inactivation of the voltage-gated calcium channel. Arrhythmia mutations in calmodulin cause conformational changes that affect interactions with the cardiac voltage-gated calcium channel.,Wang K, Holt C, Lu J, Brohus M, Larsen KT, Overgaard MT, Wimmer R, Van Petegem F Proc Natl Acad Sci U S A. 2018 Oct 22. pii: 1808733115. doi:, 10.1073/pnas.1808733115. PMID:30348784[14] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|