6a5t: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
Line 3: Line 3:
<StructureSection load='6a5t' size='340' side='right' caption='[[6a5t]], [[Resolution|resolution]] 6.70&Aring;' scene=''>
<StructureSection load='6a5t' size='340' side='right' caption='[[6a5t]], [[Resolution|resolution]] 6.70&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[6a5t]] is a 23 chain structure with sequence from [http://en.wikipedia.org/wiki/ ] and [http://en.wikipedia.org/wiki/Komagataella_phaffii_(strain_gs115_/_atcc_20864) Komagataella phaffii (strain gs115 / atcc 20864)]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6A5T OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6A5T FirstGlance]. <br>
<table><tr><td colspan='2'>[[6a5t]] is a 23 chain structure with sequence from [http://en.wikipedia.org/wiki/Kompg Kompg]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6A5T OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6A5T FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr>
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">H3F3A, H3.3A, H3F3, PP781, H3F3B, H3.3B ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=644223 KOMPG]), HIST1H4A, H4/A, H4FA, HIST1H4B, H4/I, H4FI, HIST1H4C, H4/G, H4FG, HIST1H4D, H4/B, H4FB, HIST1H4E, H4/J, H4FJ, HIST1H4F, H4/C, H4FC, HIST1H4H, H4/H, H4FH, HIST1H4I, H4/M, H4FM, HIST1H4J, H4/E, H4FE, HIST1H4K, H4/D, H4FD, HIST1H4L, H4/K, H4FK, HIST2H4A, H4/N, H4F2, H4FN, HIST2H4, HIST2H4B, H4/O, H4FO, HIST4H4 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=644223 KOMPG]), HIST1H2AB, H2AFM, HIST1H2AE, H2AFA ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=644223 KOMPG]), HIST1H2BJ, H2BFR ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=644223 KOMPG])</td></tr>
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/DNA-directed_RNA_polymerase DNA-directed RNA polymerase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.7.6 2.7.7.6] </span></td></tr>
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/DNA-directed_RNA_polymerase DNA-directed RNA polymerase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.7.6 2.7.7.6] </span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6a5t FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6a5t OCA], [http://pdbe.org/6a5t PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6a5t RCSB], [http://www.ebi.ac.uk/pdbsum/6a5t PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6a5t ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6a5t FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6a5t OCA], [http://pdbe.org/6a5t PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6a5t RCSB], [http://www.ebi.ac.uk/pdbsum/6a5t PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6a5t ProSAT]</span></td></tr>
Line 10: Line 11:
== Function ==
== Function ==
[[http://www.uniprot.org/uniprot/C4QZQ7_KOMPG C4QZQ7_KOMPG]] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates.[RuleBase:RU363031] [[http://www.uniprot.org/uniprot/C4R4Y0_KOMPG C4R4Y0_KOMPG]] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates.[RuleBase:RU004279] [[http://www.uniprot.org/uniprot/F2QPE6_KOMPC F2QPE6_KOMPC]] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates.[PIRNR:PIRNR005586] [[http://www.uniprot.org/uniprot/H2B1J_HUMAN H2B1J_HUMAN]] Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.<ref>PMID:11859126</ref> <ref>PMID:12860195</ref> <ref>PMID:15019208</ref>  Has broad antibacterial activity. May contribute to the formation of the functional antimicrobial barrier of the colonic epithelium, and to the bactericidal activity of amniotic fluid.<ref>PMID:11859126</ref> <ref>PMID:12860195</ref> <ref>PMID:15019208</ref>   
[[http://www.uniprot.org/uniprot/C4QZQ7_KOMPG C4QZQ7_KOMPG]] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates.[RuleBase:RU363031] [[http://www.uniprot.org/uniprot/C4R4Y0_KOMPG C4R4Y0_KOMPG]] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates.[RuleBase:RU004279] [[http://www.uniprot.org/uniprot/F2QPE6_KOMPC F2QPE6_KOMPC]] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates.[PIRNR:PIRNR005586] [[http://www.uniprot.org/uniprot/H2B1J_HUMAN H2B1J_HUMAN]] Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.<ref>PMID:11859126</ref> <ref>PMID:12860195</ref> <ref>PMID:15019208</ref>  Has broad antibacterial activity. May contribute to the formation of the functional antimicrobial barrier of the colonic epithelium, and to the bactericidal activity of amniotic fluid.<ref>PMID:11859126</ref> <ref>PMID:12860195</ref> <ref>PMID:15019208</ref>   
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Genomic DNA forms chromatin, in which the nucleosome is the repeating unit. The mechanism by which RNA polymerase II (RNAPII) transcribes the nucleosomal DNA remains unclear. Here we report the cryo-electron microscopy structures of RNAPII-nucleosome complexes, in which RNAPII pauses at the superhelical locations, SHL(-6), SHL(-5), SHL(-2), and SHL(-1), of the nucleosome. RNAPII pauses at the major histone-DNA contact sites, and the nucleosome interactions with the RNAPII subunits stabilize the pause. These structures reveal snapshots of nucleosomal transcription, where RNAPII gradually tears DNA from the histone surface, while preserving the histone octamer. Interestingly, the nucleosomes in the SHL(-1) complexes are bound to a "foreign" DNA segment, which might explain the histone transfer mechanism. These results provide the foundations for understanding chromatin transcription and epigenetic regulation.
Structural basis of the nucleosome transition during RNA polymerase II passage.,Kujirai T, Ehara H, Fujino Y, Shirouzu M, Sekine SI, Kurumizaka H Science. 2018 Oct 4. pii: science.aau9904. doi: 10.1126/science.aau9904. PMID:30287617<ref>PMID:30287617</ref>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 6a5t" style="background-color:#fffaf0;"></div>
==See Also==
*[[RNA polymerase|RNA polymerase]]
== References ==
== References ==
<references/>
<references/>
Line 15: Line 28:
</StructureSection>
</StructureSection>
[[Category: DNA-directed RNA polymerase]]
[[Category: DNA-directed RNA polymerase]]
[[Category: Kompg]]
[[Category: Ehara, H]]
[[Category: Ehara, H]]
[[Category: Fujino, Y]]
[[Category: Fujino, Y]]

Revision as of 09:41, 24 October 2018

RNA polymerase II elongation complex stalled at SHL(-1) of the nucleosomeRNA polymerase II elongation complex stalled at SHL(-1) of the nucleosome

Structural highlights

6a5t is a 23 chain structure with sequence from Kompg. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:,
Gene:H3F3A, H3.3A, H3F3, PP781, H3F3B, H3.3B (KOMPG), HIST1H4A, H4/A, H4FA, HIST1H4B, H4/I, H4FI, HIST1H4C, H4/G, H4FG, HIST1H4D, H4/B, H4FB, HIST1H4E, H4/J, H4FJ, HIST1H4F, H4/C, H4FC, HIST1H4H, H4/H, H4FH, HIST1H4I, H4/M, H4FM, HIST1H4J, H4/E, H4FE, HIST1H4K, H4/D, H4FD, HIST1H4L, H4/K, H4FK, HIST2H4A, H4/N, H4F2, H4FN, HIST2H4, HIST2H4B, H4/O, H4FO, HIST4H4 (KOMPG), HIST1H2AB, H2AFM, HIST1H2AE, H2AFA (KOMPG), HIST1H2BJ, H2BFR (KOMPG)
Activity:DNA-directed RNA polymerase, with EC number 2.7.7.6
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

[C4QZQ7_KOMPG] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates.[RuleBase:RU363031] [C4R4Y0_KOMPG] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates.[RuleBase:RU004279] [F2QPE6_KOMPC] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates.[PIRNR:PIRNR005586] [H2B1J_HUMAN] Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.[1] [2] [3] Has broad antibacterial activity. May contribute to the formation of the functional antimicrobial barrier of the colonic epithelium, and to the bactericidal activity of amniotic fluid.[4] [5] [6]

Publication Abstract from PubMed

Genomic DNA forms chromatin, in which the nucleosome is the repeating unit. The mechanism by which RNA polymerase II (RNAPII) transcribes the nucleosomal DNA remains unclear. Here we report the cryo-electron microscopy structures of RNAPII-nucleosome complexes, in which RNAPII pauses at the superhelical locations, SHL(-6), SHL(-5), SHL(-2), and SHL(-1), of the nucleosome. RNAPII pauses at the major histone-DNA contact sites, and the nucleosome interactions with the RNAPII subunits stabilize the pause. These structures reveal snapshots of nucleosomal transcription, where RNAPII gradually tears DNA from the histone surface, while preserving the histone octamer. Interestingly, the nucleosomes in the SHL(-1) complexes are bound to a "foreign" DNA segment, which might explain the histone transfer mechanism. These results provide the foundations for understanding chromatin transcription and epigenetic regulation.

Structural basis of the nucleosome transition during RNA polymerase II passage.,Kujirai T, Ehara H, Fujino Y, Shirouzu M, Sekine SI, Kurumizaka H Science. 2018 Oct 4. pii: science.aau9904. doi: 10.1126/science.aau9904. PMID:30287617[7]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Kim HS, Cho JH, Park HW, Yoon H, Kim MS, Kim SC. Endotoxin-neutralizing antimicrobial proteins of the human placenta. J Immunol. 2002 Mar 1;168(5):2356-64. PMID:11859126
  2. Tollin M, Bergman P, Svenberg T, Jornvall H, Gudmundsson GH, Agerberth B. Antimicrobial peptides in the first line defence of human colon mucosa. Peptides. 2003 Apr;24(4):523-30. PMID:12860195
  3. Howell SJ, Wilk D, Yadav SP, Bevins CL. Antimicrobial polypeptides of the human colonic epithelium. Peptides. 2003 Nov;24(11):1763-70. PMID:15019208 doi:10.1016/j.peptides.2003.07.028
  4. Kim HS, Cho JH, Park HW, Yoon H, Kim MS, Kim SC. Endotoxin-neutralizing antimicrobial proteins of the human placenta. J Immunol. 2002 Mar 1;168(5):2356-64. PMID:11859126
  5. Tollin M, Bergman P, Svenberg T, Jornvall H, Gudmundsson GH, Agerberth B. Antimicrobial peptides in the first line defence of human colon mucosa. Peptides. 2003 Apr;24(4):523-30. PMID:12860195
  6. Howell SJ, Wilk D, Yadav SP, Bevins CL. Antimicrobial polypeptides of the human colonic epithelium. Peptides. 2003 Nov;24(11):1763-70. PMID:15019208 doi:10.1016/j.peptides.2003.07.028
  7. Kujirai T, Ehara H, Fujino Y, Shirouzu M, Sekine SI, Kurumizaka H. Structural basis of the nucleosome transition during RNA polymerase II passage. Science. 2018 Oct 4. pii: science.aau9904. doi: 10.1126/science.aau9904. PMID:30287617 doi:http://dx.doi.org/10.1126/science.aau9904

6a5t, resolution 6.70Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA