6hre: Difference between revisions
m Protected "6hre" [edit=sysop:move=sysop] |
No edit summary |
||
Line 1: | Line 1: | ||
The | ==Paired helical filament from sporadic Alzheimer's disease brain== | ||
<StructureSection load='6hre' size='340' side='right' caption='[[6hre]], [[Resolution|resolution]] 3.20Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[6hre]] is a 6 chain structure with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6HRE OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6HRE FirstGlance]. <br> | |||
</td></tr><tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[5o3l|5o3l]]</td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6hre FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6hre OCA], [http://pdbe.org/6hre PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6hre RCSB], [http://www.ebi.ac.uk/pdbsum/6hre PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6hre ProSAT]</span></td></tr> | |||
</table> | |||
== Disease == | |||
[[http://www.uniprot.org/uniprot/TAU_HUMAN TAU_HUMAN]] Note=In Alzheimer disease, the neuronal cytoskeleton in the brain is progressively disrupted and replaced by tangles of paired helical filaments (PHF) and straight filaments, mainly composed of hyperphosphorylated forms of TAU (PHF-TAU or AD P-TAU). O-GlcNAcylation is greatly reduced in Alzheimer disease brain cerebral cortex leading to an increase in TAU/MAPT phosphorylations.<ref>PMID:19451179</ref> <ref>PMID:2484340</ref> <ref>PMID:14517953</ref> Defects in MAPT are a cause of frontotemporal dementia (FTD) [MIM:[http://omim.org/entry/600274 600274]]; also called frontotemporal dementia (FTD), pallido-ponto-nigral degeneration (PPND) or historically termed Pick complex. This form of frontotemporal dementia is characterized by presenile dementia with behavioral changes, deterioration of cognitive capacities and loss of memory. In some cases, parkinsonian symptoms are prominent. Neuropathological changes include frontotemporal atrophy often associated with atrophy of the basal ganglia, substantia nigra, amygdala. In most cases, protein tau deposits are found in glial cells and/or neurons.<ref>PMID:19451179</ref> <ref>PMID:2484340</ref> <ref>PMID:14517953</ref> <ref>PMID:9629852</ref> <ref>PMID:9736786</ref> <ref>PMID:9641683</ref> <ref>PMID:9789048</ref> <ref>PMID:9973279</ref> <ref>PMID:10553987</ref> <ref>PMID:10214944</ref> <ref>PMID:10374757</ref> <ref>PMID:10489057</ref> <ref>PMID:10208578</ref> <ref>PMID:11117541</ref> <ref>PMID:10802785</ref> <ref>PMID:11071507</ref> <ref>PMID:11585254</ref> <ref>PMID:11278002</ref> <ref>PMID:12473774</ref> <ref>PMID:11921059</ref> <ref>PMID:11906000</ref> <ref>PMID:11889249</ref> <ref>PMID:12509859</ref> <ref>PMID:16240366</ref> <ref>PMID:15883319</ref> Defects in MAPT are a cause of Pick disease of the brain (PIDB) [MIM:[http://omim.org/entry/172700 172700]]. It is a rare form of dementia pathologically defined by severe atrophy, neuronal loss and gliosis. It is characterized by the occurrence of tau-positive inclusions, swollen neurons (Pick cells) and argentophilic neuronal inclusions known as Pick bodies that disproportionally affect the frontal and temporal cortical regions. Clinical features include aphasia, apraxia, confusion, anomia, memory loss and personality deterioration.<ref>PMID:19451179</ref> <ref>PMID:2484340</ref> <ref>PMID:14517953</ref> <ref>PMID:10604746</ref> <ref>PMID:11117542</ref> <ref>PMID:11089577</ref> <ref>PMID:11601501</ref> <ref>PMID:11891833</ref> Note=Defects in MAPT are a cause of corticobasal degeneration (CBD). It is marked by extrapyramidal signs and apraxia and can be associated with memory loss. Neuropathologic features may overlap Alzheimer disease, progressive supranuclear palsy, and Parkinson disease.<ref>PMID:19451179</ref> <ref>PMID:2484340</ref> <ref>PMID:14517953</ref> Defects in MAPT are a cause of progressive supranuclear palsy type 1 (PSNP1) [MIM:[http://omim.org/entry/601104 601104]]; also abbreviated as PSP and also known as Steele-Richardson-Olszewski syndrome. PSNP1 is characterized by akinetic-rigid syndrome, supranuclear gaze palsy, pyramidal tract dysfunction, pseudobulbar signs and cognitive capacities deterioration. Neurofibrillary tangles and gliosis but no amyloid plaques are found in diseased brains. Most cases appear to be sporadic, with a significant association with a common haplotype including the MAPT gene and the flanking regions. Familial cases show an autosomal dominant pattern of transmission with incomplete penetrance; genetic analysis of a few cases showed the occurrence of tau mutations, including a deletion of Asn-613.<ref>PMID:19451179</ref> <ref>PMID:2484340</ref> <ref>PMID:14517953</ref> <ref>PMID:10534245</ref> <ref>PMID:11220749</ref> <ref>PMID:12325083</ref> <ref>PMID:14991829</ref> <ref>PMID:14991828</ref> <ref>PMID:16157753</ref> Defects in MAPT are a cause of Parkinson-dementia syndrome (PARDE) [MIM:[http://omim.org/entry/260540 260540]]. A syndrome characterized by parkinsonism tremor, rigidity, dementia, ophthalmoparesis and pyramidal signs. Neurofibrillary degeneration occurs in the hippocampus, basal ganglia and brainstem nuclei.<ref>PMID:19451179</ref> <ref>PMID:2484340</ref> <ref>PMID:14517953</ref> | |||
== Function == | |||
[[http://www.uniprot.org/uniprot/TAU_HUMAN TAU_HUMAN]] Promotes microtubule assembly and stability, and might be involved in the establishment and maintenance of neuronal polarity. The C-terminus binds axonal microtubules while the N-terminus binds neural plasma membrane components, suggesting that tau functions as a linker protein between both. Axonal polarity is predetermined by TAU/MAPT localization (in the neuronal cell) in the domain of the cell body defined by the centrosome. The short isoforms allow plasticity of the cytoskeleton whereas the longer isoforms may preferentially play a role in its stabilization.<ref>PMID:21985311</ref> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
The ordered assembly of tau protein into abnormal filaments is a defining characteristic of Alzheimer's disease (AD) and other neurodegenerative disorders. It is not known if the structures of tau filaments vary within, or between, the brains of individuals with AD. We used a combination of electron cryo-microscopy (cryo-EM) and immuno-gold negative-stain electron microscopy (immuno-EM) to determine the structures of paired helical filaments (PHFs) and straight filaments (SFs) from the frontal cortex of 17 cases of AD (15 sporadic and 2 inherited) and 2 cases of atypical AD (posterior cortical atrophy). The high-resolution structures of PHFs and SFs from the frontal cortex of 3 cases of AD, 2 sporadic and 1 inherited, were determined by cryo-EM. We also used immuno-EM to study the PHFs and SFs from a number of cortical and subcortical brain regions. PHFs outnumbered SFs in all AD cases. By cryo-EM, PHFs and SFs were made of two C-shaped protofilaments with a combined cross-beta/beta-helix structure, as described previously for one case of AD. The higher resolution structures obtained here showed two additional amino acids at each end of the protofilament. The immuno-EM findings, which indicated the presence of repeats 3 and 4, but not of the N-terminal regions of repeats 1 and 2, of tau in the filament cores of all AD cases, were consistent with the cryo-EM results. These findings show that there is no significant variation in tau filament structures between individuals with AD. This knowledge will be crucial for understanding the mechanisms that underlie tau filament formation and for developing novel diagnostics and therapies. | |||
Tau filaments from multiple cases of sporadic and inherited Alzheimer's disease adopt a common fold.,Falcon B, Zhang W, Schweighauser M, Murzin AG, Vidal R, Garringer HJ, Ghetti B, Scheres SHW, Goedert M Acta Neuropathol. 2018 Oct 1. pii: 10.1007/s00401-018-1914-z. doi:, 10.1007/s00401-018-1914-z. PMID:30276465<ref>PMID:30276465</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
[[Category: | </div> | ||
<div class="pdbe-citations 6hre" style="background-color:#fffaf0;"></div> | |||
== References == | |||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
[[Category: Homo sapiens]] | |||
[[Category: Falcon, B]] | |||
[[Category: Garringer, H J]] | |||
[[Category: Ghetti, B]] | [[Category: Ghetti, B]] | ||
[[Category: Goedert, M]] | [[Category: Goedert, M]] | ||
[[Category: Murzin, A G]] | |||
[[Category: Scheres, S H.W]] | |||
[[Category: Schweighauser, M]] | [[Category: Schweighauser, M]] | ||
[[Category: | [[Category: Vidal, R]] | ||
[[Category: Zhang, W]] | [[Category: Zhang, W]] | ||
[[Category: Alzheimer's disease]] | |||
[[Category: Amyloid]] | |||
[[Category: Fibril]] | |||
[[Category: Filament]] | |||
[[Category: Helical]] | |||
[[Category: Neurofibrillary tangly]] | |||
[[Category: Nft]] | |||
[[Category: Paired helical filament]] | |||
[[Category: Phf]] | |||
[[Category: Protein fibril]] | |||
[[Category: Tau]] |
Revision as of 11:16, 10 October 2018
Paired helical filament from sporadic Alzheimer's disease brainPaired helical filament from sporadic Alzheimer's disease brain
Structural highlights
Disease[TAU_HUMAN] Note=In Alzheimer disease, the neuronal cytoskeleton in the brain is progressively disrupted and replaced by tangles of paired helical filaments (PHF) and straight filaments, mainly composed of hyperphosphorylated forms of TAU (PHF-TAU or AD P-TAU). O-GlcNAcylation is greatly reduced in Alzheimer disease brain cerebral cortex leading to an increase in TAU/MAPT phosphorylations.[1] [2] [3] Defects in MAPT are a cause of frontotemporal dementia (FTD) [MIM:600274]; also called frontotemporal dementia (FTD), pallido-ponto-nigral degeneration (PPND) or historically termed Pick complex. This form of frontotemporal dementia is characterized by presenile dementia with behavioral changes, deterioration of cognitive capacities and loss of memory. In some cases, parkinsonian symptoms are prominent. Neuropathological changes include frontotemporal atrophy often associated with atrophy of the basal ganglia, substantia nigra, amygdala. In most cases, protein tau deposits are found in glial cells and/or neurons.[4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] Defects in MAPT are a cause of Pick disease of the brain (PIDB) [MIM:172700]. It is a rare form of dementia pathologically defined by severe atrophy, neuronal loss and gliosis. It is characterized by the occurrence of tau-positive inclusions, swollen neurons (Pick cells) and argentophilic neuronal inclusions known as Pick bodies that disproportionally affect the frontal and temporal cortical regions. Clinical features include aphasia, apraxia, confusion, anomia, memory loss and personality deterioration.[29] [30] [31] [32] [33] [34] [35] [36] Note=Defects in MAPT are a cause of corticobasal degeneration (CBD). It is marked by extrapyramidal signs and apraxia and can be associated with memory loss. Neuropathologic features may overlap Alzheimer disease, progressive supranuclear palsy, and Parkinson disease.[37] [38] [39] Defects in MAPT are a cause of progressive supranuclear palsy type 1 (PSNP1) [MIM:601104]; also abbreviated as PSP and also known as Steele-Richardson-Olszewski syndrome. PSNP1 is characterized by akinetic-rigid syndrome, supranuclear gaze palsy, pyramidal tract dysfunction, pseudobulbar signs and cognitive capacities deterioration. Neurofibrillary tangles and gliosis but no amyloid plaques are found in diseased brains. Most cases appear to be sporadic, with a significant association with a common haplotype including the MAPT gene and the flanking regions. Familial cases show an autosomal dominant pattern of transmission with incomplete penetrance; genetic analysis of a few cases showed the occurrence of tau mutations, including a deletion of Asn-613.[40] [41] [42] [43] [44] [45] [46] [47] [48] Defects in MAPT are a cause of Parkinson-dementia syndrome (PARDE) [MIM:260540]. A syndrome characterized by parkinsonism tremor, rigidity, dementia, ophthalmoparesis and pyramidal signs. Neurofibrillary degeneration occurs in the hippocampus, basal ganglia and brainstem nuclei.[49] [50] [51] Function[TAU_HUMAN] Promotes microtubule assembly and stability, and might be involved in the establishment and maintenance of neuronal polarity. The C-terminus binds axonal microtubules while the N-terminus binds neural plasma membrane components, suggesting that tau functions as a linker protein between both. Axonal polarity is predetermined by TAU/MAPT localization (in the neuronal cell) in the domain of the cell body defined by the centrosome. The short isoforms allow plasticity of the cytoskeleton whereas the longer isoforms may preferentially play a role in its stabilization.[52] Publication Abstract from PubMedThe ordered assembly of tau protein into abnormal filaments is a defining characteristic of Alzheimer's disease (AD) and other neurodegenerative disorders. It is not known if the structures of tau filaments vary within, or between, the brains of individuals with AD. We used a combination of electron cryo-microscopy (cryo-EM) and immuno-gold negative-stain electron microscopy (immuno-EM) to determine the structures of paired helical filaments (PHFs) and straight filaments (SFs) from the frontal cortex of 17 cases of AD (15 sporadic and 2 inherited) and 2 cases of atypical AD (posterior cortical atrophy). The high-resolution structures of PHFs and SFs from the frontal cortex of 3 cases of AD, 2 sporadic and 1 inherited, were determined by cryo-EM. We also used immuno-EM to study the PHFs and SFs from a number of cortical and subcortical brain regions. PHFs outnumbered SFs in all AD cases. By cryo-EM, PHFs and SFs were made of two C-shaped protofilaments with a combined cross-beta/beta-helix structure, as described previously for one case of AD. The higher resolution structures obtained here showed two additional amino acids at each end of the protofilament. The immuno-EM findings, which indicated the presence of repeats 3 and 4, but not of the N-terminal regions of repeats 1 and 2, of tau in the filament cores of all AD cases, were consistent with the cryo-EM results. These findings show that there is no significant variation in tau filament structures between individuals with AD. This knowledge will be crucial for understanding the mechanisms that underlie tau filament formation and for developing novel diagnostics and therapies. Tau filaments from multiple cases of sporadic and inherited Alzheimer's disease adopt a common fold.,Falcon B, Zhang W, Schweighauser M, Murzin AG, Vidal R, Garringer HJ, Ghetti B, Scheres SHW, Goedert M Acta Neuropathol. 2018 Oct 1. pii: 10.1007/s00401-018-1914-z. doi:, 10.1007/s00401-018-1914-z. PMID:30276465[53] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|