3cpc: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
==Crystal structure of the VEGFR2 kinase domain in complex with a pyridone inhibitor== | ==Crystal structure of the VEGFR2 kinase domain in complex with a pyridone inhibitor== | ||
<StructureSection load='3cpc' size='340' side='right' caption='[[3cpc]], [[Resolution|resolution]] 2.40Å' scene=''> | <StructureSection load='3cpc' size='340' side='right'caption='[[3cpc]], [[Resolution|resolution]] 2.40Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[3cpc]] is a 2 chain structure with sequence from [ | <table><tr><td colspan='2'>[[3cpc]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3CPC OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3CPC FirstGlance]. <br> | ||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=C52:3-(2-AMINOQUINAZOLIN-6-YL)-4-METHYL-1-[3-(TRIFLUOROMETHYL)PHENYL]PYRIDIN-2(1H)-ONE'>C52</scene></td></tr> | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=C52:3-(2-AMINOQUINAZOLIN-6-YL)-4-METHYL-1-[3-(TRIFLUOROMETHYL)PHENYL]PYRIDIN-2(1H)-ONE'>C52</scene></td></tr> | ||
<tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=PTR:O-PHOSPHOTYROSINE'>PTR</scene></td></tr> | <tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=PTR:O-PHOSPHOTYROSINE'>PTR</scene></td></tr> | ||
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[3cp9|3cp9]], [[3cpb|3cpb]]</td></tr> | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[3cp9|3cp9]], [[3cpb|3cpb]]</div></td></tr> | ||
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">KDR, FLK1 ([ | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">KDR, FLK1 ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr> | ||
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[ | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[https://en.wikipedia.org/wiki/Receptor_protein-tyrosine_kinase Receptor protein-tyrosine kinase], with EC number [https://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.10.1 2.7.10.1] </span></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[ | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3cpc FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3cpc OCA], [https://pdbe.org/3cpc PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3cpc RCSB], [https://www.ebi.ac.uk/pdbsum/3cpc PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3cpc ProSAT]</span></td></tr> | ||
</table> | </table> | ||
== Disease == | == Disease == | ||
[[ | [[https://www.uniprot.org/uniprot/VGFR2_HUMAN VGFR2_HUMAN]] Defects in KDR are associated with susceptibility to hemangioma capillary infantile (HCI) [MIM:[https://omim.org/entry/602089 602089]]. HCI are benign, highly proliferative lesions involving aberrant localized growth of capillary endothelium. They are the most common tumor of infancy, occurring in up to 10% of all births. Hemangiomas tend to appear shortly after birth and show rapid neonatal growth for up to 12 months characterized by endothelial hypercellularity and increased numbers of mast cells. This phase is followed by slow involution at a rate of about 10% per year and replacement by fibrofatty stroma.<ref>PMID:11807987</ref> <ref>PMID:18931684</ref> Note=Plays a major role in tumor angiogenesis. In case of HIV-1 infection, the interaction with extracellular viral Tat protein seems to enhance angiogenesis in Kaposi's sarcoma lesions. | ||
== Function == | == Function == | ||
[[ | [[https://www.uniprot.org/uniprot/VGFR2_HUMAN VGFR2_HUMAN]] Tyrosine-protein kinase that acts as a cell-surface receptor for VEGFA, VEGFC and VEGFD. Plays an essential role in the regulation of angiogenesis, vascular development, vascular permeability, and embryonic hematopoiesis. Promotes proliferation, survival, migration and differentiation of endothelial cells. Promotes reorganization of the actin cytoskeleton. Isoforms lacking a transmembrane domain, such as isoform 2 and isoform 3, may function as decoy receptors for VEGFA, VEGFC and/or VEGFD. Isoform 2 plays an important role as negative regulator of VEGFA- and VEGFC-mediated lymphangiogenesis by limiting the amount of free VEGFA and/or VEGFC and preventing their binding to FLT4. Modulates FLT1 and FLT4 signaling by forming heterodimers. Binding of vascular growth factors to isoform 1 leads to the activation of several signaling cascades. Activation of PLCG1 leads to the production of the cellular signaling molecules diacylglycerol and inositol 1,4,5-trisphosphate and the activation of protein kinase C. Mediates activation of MAPK1/ERK2, MAPK3/ERK1 and the MAP kinase signaling pathway, as well as of the AKT1 signaling pathway. Mediates phosphorylation of PIK3R1, the regulatory subunit of phosphatidylinositol 3-kinase, reorganization of the actin cytoskeleton and activation of PTK2/FAK1. Required for VEGFA-mediated induction of NOS2 and NOS3, leading to the production of the signaling molecule nitric oxide (NO) by endothelial cells. Phosphorylates PLCG1. Promotes phosphorylation of FYN, NCK1, NOS3, PIK3R1, PTK2/FAK1 and SRC.<ref>PMID:19668192</ref> <ref>PMID:1417831</ref> <ref>PMID:7929439</ref> <ref>PMID:9160888</ref> <ref>PMID:9837777</ref> <ref>PMID:9804796</ref> <ref>PMID:10600473</ref> <ref>PMID:10102632</ref> <ref>PMID:11387210</ref> <ref>PMID:12649282</ref> <ref>PMID:15026417</ref> <ref>PMID:15215251</ref> <ref>PMID:15962004</ref> <ref>PMID:16966330</ref> <ref>PMID:17303569</ref> <ref>PMID:19834490</ref> <ref>PMID:20179233</ref> <ref>PMID:20224550</ref> <ref>PMID:20705758</ref> <ref>PMID:10368301</ref> <ref>PMID:18529047</ref> <ref>PMID:20080685</ref> | ||
== Evolutionary Conservation == | == Evolutionary Conservation == | ||
[[Image:Consurf_key_small.gif|200px|right]] | [[Image:Consurf_key_small.gif|200px|right]] | ||
Line 36: | Line 36: | ||
==See Also== | ==See Also== | ||
*[[ | *[[3D structures of vascular endothelial growth factor receptor|3D structures of vascular endothelial growth factor receptor]] | ||
== References == | == References == | ||
<references/> | <references/> | ||
Line 42: | Line 42: | ||
</StructureSection> | </StructureSection> | ||
[[Category: Human]] | [[Category: Human]] | ||
[[Category: Large Structures]] | |||
[[Category: Receptor protein-tyrosine kinase]] | [[Category: Receptor protein-tyrosine kinase]] | ||
[[Category: Gu, Y]] | [[Category: Gu, Y]] |
Revision as of 22:12, 20 October 2021
Crystal structure of the VEGFR2 kinase domain in complex with a pyridone inhibitorCrystal structure of the VEGFR2 kinase domain in complex with a pyridone inhibitor
Structural highlights
Disease[VGFR2_HUMAN] Defects in KDR are associated with susceptibility to hemangioma capillary infantile (HCI) [MIM:602089]. HCI are benign, highly proliferative lesions involving aberrant localized growth of capillary endothelium. They are the most common tumor of infancy, occurring in up to 10% of all births. Hemangiomas tend to appear shortly after birth and show rapid neonatal growth for up to 12 months characterized by endothelial hypercellularity and increased numbers of mast cells. This phase is followed by slow involution at a rate of about 10% per year and replacement by fibrofatty stroma.[1] [2] Note=Plays a major role in tumor angiogenesis. In case of HIV-1 infection, the interaction with extracellular viral Tat protein seems to enhance angiogenesis in Kaposi's sarcoma lesions. Function[VGFR2_HUMAN] Tyrosine-protein kinase that acts as a cell-surface receptor for VEGFA, VEGFC and VEGFD. Plays an essential role in the regulation of angiogenesis, vascular development, vascular permeability, and embryonic hematopoiesis. Promotes proliferation, survival, migration and differentiation of endothelial cells. Promotes reorganization of the actin cytoskeleton. Isoforms lacking a transmembrane domain, such as isoform 2 and isoform 3, may function as decoy receptors for VEGFA, VEGFC and/or VEGFD. Isoform 2 plays an important role as negative regulator of VEGFA- and VEGFC-mediated lymphangiogenesis by limiting the amount of free VEGFA and/or VEGFC and preventing their binding to FLT4. Modulates FLT1 and FLT4 signaling by forming heterodimers. Binding of vascular growth factors to isoform 1 leads to the activation of several signaling cascades. Activation of PLCG1 leads to the production of the cellular signaling molecules diacylglycerol and inositol 1,4,5-trisphosphate and the activation of protein kinase C. Mediates activation of MAPK1/ERK2, MAPK3/ERK1 and the MAP kinase signaling pathway, as well as of the AKT1 signaling pathway. Mediates phosphorylation of PIK3R1, the regulatory subunit of phosphatidylinositol 3-kinase, reorganization of the actin cytoskeleton and activation of PTK2/FAK1. Required for VEGFA-mediated induction of NOS2 and NOS3, leading to the production of the signaling molecule nitric oxide (NO) by endothelial cells. Phosphorylates PLCG1. Promotes phosphorylation of FYN, NCK1, NOS3, PIK3R1, PTK2/FAK1 and SRC.[3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedInhibition of c-Kit has the potential to treat mast cell associated fibrotic diseases. We report the discovery of several aminoquinazoline pyridones that are potent inhibitors of c-Kit with greater than 200-fold selectivity against KDR, p38, Lck, and Src. In vivo efficacy of pyridone 16 by dose-dependent inhibition of histamine release was demonstrated in a rodent pharmacodynamic model of mast cell activation. Discovery of Aryl Aminoquinazoline Pyridones as Potent, Selective, and Orally Efficacious Inhibitors of Receptor Tyrosine Kinase c-Kit.,Hu E, Tasker A, White RD, Kunz RK, Human J, Chen N, Burli R, Hungate R, Novak P, Itano A, Zhang X, Yu V, Nguyen Y, Tudor Y, Plant M, Flynn S, Xu Y, Meagher KL, Whittington DA, Ng GY J Med Chem. 2008 Jun 12;51(11):3065-8. Epub 2008 May 1. PMID:18447379[25] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|
Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)
OCA- Human
- Large Structures
- Receptor protein-tyrosine kinase
- Gu, Y
- Long, A M
- Rose, P
- Whittington, D A
- Zhao, H
- Angiogenesis
- Atp-binding
- Developmental protein
- Differentiation
- Glycoprotein
- Host-virus interaction
- Immunoglobulin domain
- Membrane
- Nucleotide-binding
- Phosphoprotein
- Receptor tyrosine kinase
- Transferase
- Transmembrane
- Tyrosine-protein kinase