2d3b: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
==Crystal Structure of the Maize Glutamine Synthetase complexed with AMPPNP and Methionine sulfoximine== | ==Crystal Structure of the Maize Glutamine Synthetase complexed with AMPPNP and Methionine sulfoximine== | ||
<StructureSection load='2d3b' size='340' side='right' caption='[[2d3b]], [[Resolution|resolution]] 3.50Å' scene=''> | <StructureSection load='2d3b' size='340' side='right'caption='[[2d3b]], [[Resolution|resolution]] 3.50Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[2d3b]] is a 10 chain structure with sequence from [ | <table><tr><td colspan='2'>[[2d3b]] is a 10 chain structure with sequence from [https://en.wikipedia.org/wiki/Maize Maize]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2D3B OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2D3B FirstGlance]. <br> | ||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=ANP:PHOSPHOAMINOPHOSPHONIC+ACID-ADENYLATE+ESTER'>ANP</scene>, <scene name='pdbligand=MN:MANGANESE+(II)+ION'>MN</scene>, <scene name='pdbligand=MSL:(2S)-2-AMINO-4-(METHYLSULFONIMIDOYL)BUTANOIC+ACID'>MSL</scene></td></tr> | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ANP:PHOSPHOAMINOPHOSPHONIC+ACID-ADENYLATE+ESTER'>ANP</scene>, <scene name='pdbligand=MN:MANGANESE+(II)+ION'>MN</scene>, <scene name='pdbligand=MSL:(2S)-2-AMINO-4-(METHYLSULFONIMIDOYL)BUTANOIC+ACID'>MSL</scene></td></tr> | ||
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[2d3a|2d3a]], [[2d3c|2d3c]]</td></tr> | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[2d3a|2d3a]], [[2d3c|2d3c]]</div></td></tr> | ||
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">gs1a ([ | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">gs1a ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=4577 MAIZE])</td></tr> | ||
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[ | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[https://en.wikipedia.org/wiki/Glutamate--ammonia_ligase Glutamate--ammonia ligase], with EC number [https://www.brenda-enzymes.info/php/result_flat.php4?ecno=6.3.1.2 6.3.1.2] </span></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[ | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2d3b FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2d3b OCA], [https://pdbe.org/2d3b PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2d3b RCSB], [https://www.ebi.ac.uk/pdbsum/2d3b PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2d3b ProSAT]</span></td></tr> | ||
</table> | </table> | ||
== Function == | == Function == | ||
[[ | [[https://www.uniprot.org/uniprot/GLNA3_MAIZE GLNA3_MAIZE]] Plays a role in the flow of nitrogen into nitrogenous organic compounds. | ||
== Evolutionary Conservation == | == Evolutionary Conservation == | ||
[[Image:Consurf_key_small.gif|200px|right]] | [[Image:Consurf_key_small.gif|200px|right]] | ||
Line 33: | Line 33: | ||
==See Also== | ==See Also== | ||
*[[Glutamine synthetase|Glutamine synthetase]] | *[[Glutamine synthetase 3D structures|Glutamine synthetase 3D structures]] | ||
== References == | == References == | ||
<references/> | <references/> | ||
Line 39: | Line 39: | ||
</StructureSection> | </StructureSection> | ||
[[Category: Glutamate--ammonia ligase]] | [[Category: Glutamate--ammonia ligase]] | ||
[[Category: Large Structures]] | |||
[[Category: Maize]] | [[Category: Maize]] | ||
[[Category: Hase, T]] | [[Category: Hase, T]] |
Revision as of 14:53, 3 February 2021
Crystal Structure of the Maize Glutamine Synthetase complexed with AMPPNP and Methionine sulfoximineCrystal Structure of the Maize Glutamine Synthetase complexed with AMPPNP and Methionine sulfoximine
Structural highlights
Function[GLNA3_MAIZE] Plays a role in the flow of nitrogen into nitrogenous organic compounds. Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedPlants provide nourishment for animals and other heterotrophs as the sole primary producer in the food chain. Glutamine synthetase (GS), one of the essential enzymes for plant autotrophy catalyzes the incorporation of ammonia into glutamate to generate glutamine with concomitant hydrolysis of ATP, and plays a crucial role in the assimilation and re-assimilation of ammonia derived from a wide variety of metabolic processes during plant growth and development. Elucidation of the atomic structure of higher plant GS is important to understand its detailed reaction mechanism and to obtain further insight into plant productivity and agronomical utility. Here we report the first crystal structures of maize (Zea mays L.) GS. The structure reveals a unique decameric structure that differs significantly from the bacterial GS structure. Higher plants have several isoenzymes of GS differing in heat stability and catalytic properties for efficient responses to variation in the environment and nutrition. A key residue responsible for the heat stability was found to be Ile-161 in GS1a. The three structures in complex with substrate analogues, including phosphinothricin, a widely used herbicide, lead us to propose a mechanism for the transfer of phosphate from ATP to glutamate and to interpret the inhibitory action of phosphinothricin as a guide for the development of new potential herbicides. Atomic structure of plant glutamine synthetase: a key enzyme for plant productivity.,Unno H, Uchida T, Sugawara H, Kurisu G, Sugiyama T, Yamaya T, Sakakibara H, Hase T, Kusunoki M J Biol Chem. 2006 Sep 29;281(39):29287-96. Epub 2006 Jul 7. PMID:16829528[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|