2afh: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
==Crystal Structure of Nucleotide-Free Av2-Av1 Complex== | ==Crystal Structure of Nucleotide-Free Av2-Av1 Complex== | ||
<StructureSection load='2afh' size='340' side='right' caption='[[2afh]], [[Resolution|resolution]] 2.10Å' scene=''> | <StructureSection load='2afh' size='340' side='right'caption='[[2afh]], [[Resolution|resolution]] 2.10Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[2afh]] is a 6 chain structure with sequence from [http://en.wikipedia.org/wiki/Azotobacter_vinelandii Azotobacter vinelandii]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2AFH OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2AFH FirstGlance]. <br> | <table><tr><td colspan='2'>[[2afh]] is a 6 chain structure with sequence from [http://en.wikipedia.org/wiki/Azotobacter_vinelandii Azotobacter vinelandii]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2AFH OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2AFH FirstGlance]. <br> | ||
Line 32: | Line 32: | ||
==See Also== | ==See Also== | ||
*[[Nitrogenase|Nitrogenase]] | *[[Nitrogenase 3D structures|Nitrogenase 3D structures]] | ||
== References == | == References == | ||
<references/> | <references/> | ||
Line 38: | Line 38: | ||
</StructureSection> | </StructureSection> | ||
[[Category: Azotobacter vinelandii]] | [[Category: Azotobacter vinelandii]] | ||
[[Category: Large Structures]] | |||
[[Category: Nitrogenase]] | [[Category: Nitrogenase]] | ||
[[Category: Howard, J B]] | [[Category: Howard, J B]] |
Revision as of 18:48, 20 November 2019
Crystal Structure of Nucleotide-Free Av2-Av1 ComplexCrystal Structure of Nucleotide-Free Av2-Av1 Complex
Structural highlights
Function[NIFD_AZOVI] This molybdenum-iron protein is part of the nitrogenase complex that catalyzes the key enzymatic reactions in nitrogen fixation. [NIFH1_AZOVI] The key enzymatic reactions in nitrogen fixation are catalyzed by the nitrogenase complex, which has 2 components: the iron protein (component 2) and a component 1 which is either a molybdenum-iron protein, a vanadium-iron, or an iron-iron protein.[HAMAP-Rule:MF_00533] [NIFK_AZOVI] This molybdenum-iron protein is part of the nitrogenase complex that catalyzes the key enzymatic reactions in nitrogen fixation. Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedAdenosine triphosphate (ATP) hydrolysis in the nitrogenase complex controls the cycle of association and dissociation between the electron donor adenosine triphosphatase (ATPase) (Fe-protein) and its target catalytic protein (MoFe-protein), driving the reduction of dinitrogen into ammonia. Crystal structures in different nucleotide states have been determined that identify conformational changes in the nitrogenase complex during ATP turnover. These structures reveal distinct and mutually exclusive interaction sites on the MoFe-protein surface that are selectively populated, depending on the Fe-protein nucleotide state. A consequence of these different docking geometries is that the distance between redox cofactors, a critical determinant of the intermolecular electron transfer rate, is coupled to the nucleotide state. More generally, stabilization of distinct docking geometries by different nucleotide states, as seen for nitrogenase, could enable nucleotide hydrolysis to drive the relative motion of protein partners in molecular motors and other systems. Nitrogenase complexes: multiple docking sites for a nucleotide switch protein.,Tezcan FA, Kaiser JT, Mustafi D, Walton MY, Howard JB, Rees DC Science. 2005 Aug 26;309(5739):1377-80. PMID:16123301[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|