1oe1: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
==Atomic Resolution Structure of the Wildtype Native Nitrite Reductase from Alcaligenes xylosoxidans== | ==Atomic Resolution Structure of the Wildtype Native Nitrite Reductase from Alcaligenes xylosoxidans== | ||
<StructureSection load='1oe1' size='340' side='right' caption='[[1oe1]], [[Resolution|resolution]] 1.04Å' scene=''> | <StructureSection load='1oe1' size='340' side='right'caption='[[1oe1]], [[Resolution|resolution]] 1.04Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[1oe1]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Alcaligenes_xylosoxidans Alcaligenes xylosoxidans]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1OE1 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1OE1 FirstGlance]. <br> | <table><tr><td colspan='2'>[[1oe1]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Alcaligenes_xylosoxidans Alcaligenes xylosoxidans]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1OE1 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1OE1 FirstGlance]. <br> | ||
Line 13: | Line 13: | ||
Check<jmol> | Check<jmol> | ||
<jmolCheckbox> | <jmolCheckbox> | ||
<scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/oe/1oe1_consurf.spt"</scriptWhenChecked> | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/oe/1oe1_consurf.spt"</scriptWhenChecked> | ||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | ||
<text>to colour the structure by Evolutionary Conservation</text> | <text>to colour the structure by Evolutionary Conservation</text> | ||
Line 28: | Line 28: | ||
</div> | </div> | ||
<div class="pdbe-citations 1oe1" style="background-color:#fffaf0;"></div> | <div class="pdbe-citations 1oe1" style="background-color:#fffaf0;"></div> | ||
==See Also== | |||
*[[Nitrite reductase|Nitrite reductase]] | |||
== References == | == References == | ||
<references/> | <references/> | ||
Line 33: | Line 36: | ||
</StructureSection> | </StructureSection> | ||
[[Category: Alcaligenes xylosoxidans]] | [[Category: Alcaligenes xylosoxidans]] | ||
[[Category: Large Structures]] | |||
[[Category: Dodd, F E]] | [[Category: Dodd, F E]] | ||
[[Category: Ellis, M J]] | [[Category: Ellis, M J]] |
Revision as of 10:19, 7 August 2019
Atomic Resolution Structure of the Wildtype Native Nitrite Reductase from Alcaligenes xylosoxidansAtomic Resolution Structure of the Wildtype Native Nitrite Reductase from Alcaligenes xylosoxidans
Structural highlights
Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedWe provide the first atomic resolution (<1.20 A) structure of a copper protein, nitrite reductase, and of a mutant of the catalytically important Asp92 residue (D92E). The atomic resolution where carbon-carbon bonds of the peptide become clearly resolved, remains a key goal of structural analysis. Despite much effort and technological progress, still very few structures are known at such resolution. For example, in the Protein Data Bank (PDB) there are some 200 structures of copper proteins but the highest resolution structure is that of amicyanin, a small (12 kDa) protein, which has been resolved to 1.30 A. Here, we present the structures of wild-type copper nitrite reductase (wtNiR) from Alcaligenes xylosoxidans (36.5 kDa monomer), the "half-apo" recombinant native protein and the D92E mutant at 1.04, 1.15 and 1.12A resolutions, respectively. These structures provide the basis from which to build a detailed mechanism of this important enzyme. Atomic resolution structures of native copper nitrite reductase from Alcaligenes xylosoxidans and the active site mutant Asp92Glu.,Ellis MJ, Dodd FE, Sawers G, Eady RR, Hasnain SS J Mol Biol. 2003 Apr 25;328(2):429-38. PMID:12691751[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences |
|