1x28: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:


==Crystal Structure of e.coli AspAT complexed with N-phosphopyridoxyl-L-glutamic acid==
==Crystal Structure of e.coli AspAT complexed with N-phosphopyridoxyl-L-glutamic acid==
<StructureSection load='1x28' size='340' side='right' caption='[[1x28]], [[Resolution|resolution]] 2.40&Aring;' scene=''>
<StructureSection load='1x28' size='340' side='right'caption='[[1x28]], [[Resolution|resolution]] 2.40&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[1x28]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/"bacillus_coli"_migula_1895 "bacillus coli" migula 1895]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1X28 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1X28 FirstGlance]. <br>
<table><tr><td colspan='2'>[[1x28]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/"bacillus_coli"_migula_1895 "bacillus coli" migula 1895]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1X28 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1X28 FirstGlance]. <br>
Line 13: Line 13:
Check<jmol>
Check<jmol>
   <jmolCheckbox>
   <jmolCheckbox>
     <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/x2/1x28_consurf.spt"</scriptWhenChecked>
     <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/x2/1x28_consurf.spt"</scriptWhenChecked>
     <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
     <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
     <text>to colour the structure by Evolutionary Conservation</text>
     <text>to colour the structure by Evolutionary Conservation</text>
Line 28: Line 28:
</div>
</div>
<div class="pdbe-citations 1x28" style="background-color:#fffaf0;"></div>
<div class="pdbe-citations 1x28" style="background-color:#fffaf0;"></div>
==See Also==
*[[Aspartate aminotransferase 3D structures|Aspartate aminotransferase 3D structures]]
== References ==
== References ==
<references/>
<references/>
Line 34: Line 37:
[[Category: Bacillus coli migula 1895]]
[[Category: Bacillus coli migula 1895]]
[[Category: Aspartate transaminase]]
[[Category: Aspartate transaminase]]
[[Category: Large Structures]]
[[Category: Goto, M]]
[[Category: Goto, M]]
[[Category: Plp-dependent enzyme]]
[[Category: Plp-dependent enzyme]]
[[Category: Transferase]]
[[Category: Transferase]]

Revision as of 16:33, 17 July 2019

Crystal Structure of e.coli AspAT complexed with N-phosphopyridoxyl-L-glutamic acidCrystal Structure of e.coli AspAT complexed with N-phosphopyridoxyl-L-glutamic acid

Structural highlights

1x28 is a 2 chain structure with sequence from "bacillus_coli"_migula_1895 "bacillus coli" migula 1895. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:
Activity:Aspartate transaminase, with EC number 2.6.1.1
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

The mechanism for the reaction of aspartate aminotransferase with the C4 substrate, l-aspartate, has been well established. The binding of the C4 substrate induces conformational change in the enzyme from the open to the closed form, and the entire reaction proceeds in the closed form of the enzyme. On the contrary, little is known about the reaction with the C5 substrate, l-glutamate. In this study, we analyzed the pH-dependent binding of 2-methyl-l-glutamate to the enzyme and showed that the interaction between the amino group of 2-methyl-l-glutamate and the pyridoxal 5'-phosphate aldimine is weak compared to that between 2-methyl-l-aspartate and the aldimine. The structures of the Michaelis complexes of the enzyme with l-aspartate and l-glutamate were modeled on the basis of the maleate and glutarate complex structures of the enzyme. The result showed that l-glutamate binds to the open form of the enzyme in an extended conformation, and its alpha-amino group points in the opposite direction of the aldimine, while that of l-aspartate is close to the aldimine. These models explain the observations for 2-methyl-l-glutamate and 2-methyl-l-aspartate. The crystal structures of the complexes of aspartate aminotransferase with phosphopyridoxyl derivatives of l-glutamate, d-glutamate, and 2-methyl-l-glutamate were solved as the models for the external aldimine and ketimine complexes of l-glutamate. All the structures were in the closed form, and the two carboxylate groups and the arginine residues binding them are superimposable on the external aldimine complex with 2-methyl-l-aspartate. Taking these facts altogether, it was strongly suggested that the binding of l-glutamate to aspartate aminotransferase to form the Michaelis complex does not induce a conformational change in the enzyme, and that the conformational change to the closed form occurs during the transaldimination step. The hydrophobic residues of the entrance of the active site, including Tyr70, are considered to be important for promoting the transaldimination process and hence the recognition of the C5 substrate.

Binding of C5-dicarboxylic substrate to aspartate aminotransferase: implications for the conformational change at the transaldimination step.,Islam MM, Goto M, Miyahara I, Ikushiro H, Hirotsu K, Hayashi H Biochemistry. 2005 Jun 14;44(23):8218-29. PMID:15938611[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Islam MM, Goto M, Miyahara I, Ikushiro H, Hirotsu K, Hayashi H. Binding of C5-dicarboxylic substrate to aspartate aminotransferase: implications for the conformational change at the transaldimination step. Biochemistry. 2005 Jun 14;44(23):8218-29. PMID:15938611 doi:10.1021/bi050071g

1x28, resolution 2.40Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA