Sandbox-insulin-shelly: Difference between revisions

No edit summary
No edit summary
Line 1: Line 1:
<StructureSection load='' size='500' side='right' scene='User:Whitney_Stoppel/sandbox1/Human_insulin2/1' caption='Human insulin chain A (grey) and chain B (green), [[3i40]]'>
<StructureSection load='' size='500' side='right' scene='User:Whitney_Stoppel/sandbox1/Human_insulin2/1' caption='Human insulin chain A (grey) and chain B (green), [[3i40]]'>
[[Image:InsulinHexamer.jpg|200px|left]]&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
[[Image:InsulinHexamer.jpg|200px|left]]&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
'''Insulin''' is a hormone that controls [[Carbohydrate Metabolism|carbohydrate metabolism]] and storage in the human body.  The body is able to sense the concentration of glucose in the blood and respond by secreting insulin, which is produced by beta cells in the pancreas.  Synthesis of human insulin in E. coli is important to producing insulin for the treatment of type 1 diabetes.  Proinsulin (Pins) is processed by several proteases in the Golgi apparatus to form insulin which is shorter by 35 amino acids.  DPI is a monomeric despentapeptide (B26-B30) Ins analogue.  DTRI is a monomeric destripeptide (B28-B30) Ins analogue.  DHPI is for desheptapeptide (B24-B30) Ins.  LIns is a legume Ins.


''',איסולין''' הוא הורמון המפקח על [[Carbohydrate Metabolism|המטבוליזם של פחמימות ]]    ומאגרי הסוכר בגוף האדם.  הגוף מסוגל לחוש את ריכוז הסוכר בדם ומגיב בהפרשת איסולין
המיוצר בתאי בטא שבלבלב.
סינטזה של אינסולין הומני בחיידק E. coli הוא חשוב לייצור אינסולין לצורך טיפול בסוכרת שלב 1. '''פרואינסולין''' (Pins) מעובד בעזרת מספר פרוטאזות במערכת הגולג'י וממנו נוצר האינסולין, הקצר ב-35 חומצות אמינו מהפרואינסולין.
אינסולין מורכב משני חלקים הנקראים שרשרות A ו-B הנראות בצבעים אפור וירוק בהתאמה. שתי השרשרות קשורות בקשרי די-סולפיד הנראים בצהוב.
המודל הנראה בצבעים ירוק-אפור הוא מונומר של אינסולין והוא ההורמון הפעיל. בצורתו זו הוא נקשר אל הרצפטור  לאינסולין הנמצא בתאי שומן או השריר בגוף. וע"י כך מסמן לרצפטור 
לקשור גלוקוז, או סוכר, מהדם ולשמור אותו בתא.
אינסולין מסוגר להתקשר לעצמו וליצור דימר ע"י יצירת קשרי מימן בין הקצוות של שרשרות ה-B.
<scene name='User:Whitney_Stoppel/sandbox1/Insulin_dimer/2'>קשרי מימן אלה</scene> נראים במודל בצבע לבן.
בנוסף לכך, 3 דימרים כאלה, בנוכחות יוני אבץ, יכולים להיקשר יחד ליצירת
<scene name='User:Whitney_Stoppel/sandbox1/Insulin_hexamer/4'>הקסמר</scene>.
אינסולין נאגר בגוף בצורת ההקסמר.
Insulin is composed of two different types of peptide chains. <scene name='34/347648/Chain_a/1'>Chain A</scene> has 21 amino acids and <scene name='34/347648/Chain_b/1'>Chain B</scene> has 30 amino acids.  Both chains contain <scene name='34/347648/Secondary_structures/1'>alpha helices</scene> but no beta strands. There are 3 conserved <scene name='34/347648/Disulfide_bonds/1'>disulfide bridges</scene> which help keep the two chains together.  Insulin can also form <scene name='User:Whitney_Stoppel/sandbox1/Insulin_dimer/2'>dimers</scene> in solution due to the hydrogen bonding between the B chains (shown as white lines).  The dimers can further interact to form <scene name='User:Whitney_Stoppel/sandbox1/Insulin_hexamer/4'>hexamers</scene> due to interaction between hydrophobic surfaces.  This <scene name='User:Whitney_Stoppel/sandbox1/Insulin_ph7/2'>scene highlights</scene> the hydrophobic (gray) and polar (purple) parts of an insulin monomer at a pH of 7.
Insulin is composed of two different types of peptide chains. <scene name='34/347648/Chain_a/1'>Chain A</scene> has 21 amino acids and <scene name='34/347648/Chain_b/1'>Chain B</scene> has 30 amino acids.  Both chains contain <scene name='34/347648/Secondary_structures/1'>alpha helices</scene> but no beta strands. There are 3 conserved <scene name='34/347648/Disulfide_bonds/1'>disulfide bridges</scene> which help keep the two chains together.  Insulin can also form <scene name='User:Whitney_Stoppel/sandbox1/Insulin_dimer/2'>dimers</scene> in solution due to the hydrogen bonding between the B chains (shown as white lines).  The dimers can further interact to form <scene name='User:Whitney_Stoppel/sandbox1/Insulin_hexamer/4'>hexamers</scene> due to interaction between hydrophobic surfaces.  This <scene name='User:Whitney_Stoppel/sandbox1/Insulin_ph7/2'>scene highlights</scene> the hydrophobic (gray) and polar (purple) parts of an insulin monomer at a pH of 7.


&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Insulin is able to pair-up with itself and form a dimer by forming hydrogen bonds between the ends of two B-chains.  These <scene name='User:Whitney_Stoppel/sandbox1/Insulin_dimer/2'>hydrogen bonds</scene> are shown above in white.  Then, 3 dimers can come together in the presence of zinc ions and form a hexamer.  Insulin is stored in the <scene name='User:Whitney_Stoppel/sandbox1/Insulin_hexamer/4'>hexameric form</scene> in the body. This <scene name='User:Whitney_Stoppel/sandbox1/Insulin_ph7/2'>scene highlights</scene> the hydrophobic (gray) and polar (purple) parts of an insulin monomer at a pH of 7.  It is believed that the hydrophobic sections on the B-chain cause insulin aggregation which initially caused problems in the manufacture and storage of insulin for [[Pharmaceutical_Drugs#Treatments|pharmaceutical use]].
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Insulin is able to pair-up with itself and form a dimer by forming hydrogen bonds between the ends of two B-chains.  These <scene name='User:Whitney_Stoppel/sandbox1/Insulin_dimer/2'>hydrogen bonds</scene> are shown above in white.  Then, 3 dimers can come together in the presence of zinc ions and form a hexamer.  Insulin is stored in the <scene name='User:Whitney_Stoppel/sandbox1/Insulin_hexamer/4'>hexameric form</scene> in the body. This <scene name='User:Whitney_Stoppel/sandbox1/Insulin_ph7/2'>scene highlights</scene> the hydrophobic (gray) and polar (purple) parts of an insulin monomer at a pH of 7.  It is believed that the hydrophobic sections on the B-chain cause insulin aggregation which initially caused problems in the manufacture and storage of insulin for [[Pharmaceutical_Drugs#Treatments|pharmaceutical use]].
</StructureSection>  For additional details see [[Insulin Structure & Function]].
</StructureSection>  For additional details see [[Insulin Structure & Function]].
One of the [[CBI Molecules]]  being studied in the [http://www.umass.edu/cbi/ University of Massachusetts Amherst Chemistry-Biology Interface Program] at UMass Amherst in the [http://robertsgroup.ecs.umass.edu/ Roberts Research Group] and on display at the [http://www.molecularplayground.org Molecular Playground].
<StructureSection load='' size='350' side='right' scene='User:Whitney_Stoppel/sandbox1/Human_insulin2/1' caption='Human insulin chain A (grey) and chain B (green), [[3i40]]'>
[[Image:InsulinHexamer.jpg|200px|left]]&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
Insulin is able to pair-up with itself and form a dimer by forming hydrogen bonds between the ends of two B-chains.  These  are shown above in white.  Then, 3 dimers can come together in the presence of zinc ions and form a hexamer.  Insulin is stored in the <scene name='User:Whitney_Stoppel/sandbox1/Insulin_hexamer/4'>hexameric form</scene> in the body. This <scene name='User:Whitney_Stoppel/sandbox1/Insulin_ph7/2'>scene highlights</scene> the hydrophobic (gray) and polar (purple) parts of an insulin monomer at a pH of 7.  It is believed that the hydrophobic sections on the B-chain cause insulin aggregation which initially caused problems in the manufacture and storage of insulin for [[Pharmaceutical_Drugs#Treatments|pharmaceutical use]].
</StructureSection>  For additional details see<br />
[[Insulin Structure & Function]]<br />
[[Diabetes & Hypoglycemia]]<br />
[[Insulin (Hebrew)]]<br />
[[Insulin mo-or-sl]] (Hebrew).

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

Student, Shelly Livne