Sandbox Reserved 1072: Difference between revisions
No edit summary |
No edit summary |
||
Line 6: | Line 6: | ||
[[Image:C-di-GMP larger font.jpg |200 px|thumb|left|'''Figure 1: Cyclic-dimeric-GMP.''' Cyclic-dimeric-GMP is the product of the reaction catalyzed by DgcZ.]] | [[Image:C-di-GMP larger font.jpg |200 px|thumb|left|'''Figure 1: Cyclic-dimeric-GMP.''' Cyclic-dimeric-GMP is the product of the reaction catalyzed by DgcZ.]] | ||
[[Image:Poly B-1, 6 GlcNAc.jpg |150 px|left|thumb|'''Figure 2: Poly-β-1,6-N-acetylglucosamine.''' Poly-β-1,6-N-acetylglucosamine is a carbohydrate formed downstream of c-di-GMP utilized in formation of bacterial bio-films.]] | [[Image:Poly B-1, 6 GlcNAc.jpg |150 px|left|thumb|'''Figure 2: Poly-β-1,6-N-acetylglucosamine.''' Poly-β-1,6-N-acetylglucosamine is a carbohydrate formed downstream of c-di-GMP utilized in formation of bacterial bio-films.]] | ||
Diguanylate cyclases are class 2 transferase enzymes <span class="plainlinks">[https://en.wikipedia.org/wiki/Diguanylate_cyclase (2.7.7.65)]</span> that catalyze the production of cyclic dimeric-guanosine monophosphate (c-di-GMP, Figure 1), important to <span class="plainlinks">[https://en.wikipedia.org/wiki/Signal_transduction signal transduction]</span> as a <span class="plainlinks">[https://en.wikipedia.org/wiki/Second_messenger_system second messenger]</span><sup>[1]</sup>. Signal transduction sends messages through cells to induce cellular responses, most commonly through phosphorylation or dephosphoylation of substrate molecules. <span class="plainlinks">[https://en.wikipedia.org/wiki/Escherichia_coli ''Escherechia coli (E. coli)'']</span>, a gram-negative bacterium often found in the intestines of mammals, uses diguanylate cyclase (DgcZ) in the synthesis of its <span class="plainlinks">[https://en.wikipedia.org/wiki/biofilm biofilm]</span><sup>[2]</sup>. DgcZ from ''E. coli'' acts as a catalyst, synthesizing c-di-GMP from two substrate guanosine triphosphate (GTP) molecules. C-di-GMP is a second messenger in the production of poly-β-1,6-N-acetylglucosamine (poly-GlcNAc, Figure 2), a polysaccharide required for ''E. coli'' biofilm production<sup>[2]</sup>. This biofilm allows ''E. coli'' to adhere to extracellular surfaces. Only the inactive conformation of the complete enzyme has been crystallized | Diguanylate cyclases are class 2 transferase enzymes <span class="plainlinks">[https://en.wikipedia.org/wiki/Diguanylate_cyclase (2.7.7.65)]</span> that catalyze the production of cyclic dimeric-guanosine monophosphate (c-di-GMP, Figure 1), important to <span class="plainlinks">[https://en.wikipedia.org/wiki/Signal_transduction signal transduction]</span> as a <span class="plainlinks">[https://en.wikipedia.org/wiki/Second_messenger_system second messenger]</span><sup>[1]</sup>. Signal transduction sends messages through cells to induce cellular responses, most commonly through phosphorylation or dephosphoylation of substrate molecules. <span class="plainlinks">[https://en.wikipedia.org/wiki/Escherichia_coli ''Escherechia coli (E. coli)'']</span>, a gram-negative bacterium often found in the intestines of mammals, uses diguanylate cyclase (DgcZ) in the synthesis of its <span class="plainlinks">[https://en.wikipedia.org/wiki/biofilm biofilm]</span><sup>[2]</sup>. DgcZ from ''E. coli'' acts as a catalyst, synthesizing c-di-GMP from two substrate guanosine triphosphate (GTP) molecules. C-di-GMP is a second messenger in the production of poly-β-1,6-N-acetylglucosamine (poly-GlcNAc, Figure 2), a polysaccharide required for ''E. coli'' biofilm production<sup>[2]</sup>. This biofilm allows ''E. coli'' to adhere to extracellular surfaces. Only the inactive conformation of the complete DgcZ enzyme has been crystallized to date<sup>[3]</sup>. | ||
[[Image:Conformation change 2 bold.png|250 px|right|thumb|'''Figure 3: Diagram of DgcZ.''' DgcZ is shown in its active (left) and inactive (right) conformations. The boxes represent the GGEEF domains of the enzyme, while the cylinders represent the alpha helices of the CZB domains, where the Zinc binding sites are located<sup>[3]</sup>. Binding Zn<sup>+2</sup> inactivates the enzyme, by disrupting the active conformation of the GGEEF domain. The red and blue sections represent the two monomers of the symmetric homodimer.]] | [[Image:Conformation change 2 bold.png|250 px|right|thumb|'''Figure 3: Diagram of DgcZ.''' DgcZ is shown in its active (left) and inactive (right) conformations. The boxes represent the GGEEF domains of the enzyme, while the cylinders represent the alpha helices of the CZB domains, where the Zinc binding sites are located<sup>[3]</sup>. Binding Zn<sup>+2</sup> inactivates the enzyme, by disrupting the active conformation of the GGEEF domain. The red and blue sections represent the two monomers of the symmetric homodimer.]] | ||