4eev: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
==Crystal structure of c-Met in complex with LY2801653== | ==Crystal structure of c-Met in complex with LY2801653== | ||
<StructureSection load='4eev' size='340' side='right' caption='[[4eev]], [[Resolution|resolution]] 1.80Å' scene=''> | <StructureSection load='4eev' size='340' side='right'caption='[[4eev]], [[Resolution|resolution]] 1.80Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[4eev]] is a 1 chain structure with sequence from [ | <table><tr><td colspan='2'>[[4eev]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4EEV OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4EEV FirstGlance]. <br> | ||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=L1X:N-(3-FLUORO-4-{[1-METHYL-6-(1H-PYRAZOL-4-YL)-1H-INDAZOL-5-YL]OXY}PHENYL)-1-(4-FLUOROPHENYL)-6-METHYL-2-OXO-1,2-DIHYDROPYRIDINE-3-CARBOXAMIDE'>L1X</scene | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=L1X:N-(3-FLUORO-4-{[1-METHYL-6-(1H-PYRAZOL-4-YL)-1H-INDAZOL-5-YL]OXY}PHENYL)-1-(4-FLUOROPHENYL)-6-METHYL-2-OXO-1,2-DIHYDROPYRIDINE-3-CARBOXAMIDE'>L1X</scene></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4eev FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4eev OCA], [https://pdbe.org/4eev PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4eev RCSB], [https://www.ebi.ac.uk/pdbsum/4eev PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4eev ProSAT]</span></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[ | |||
</table> | </table> | ||
== Disease == | == Disease == | ||
[[ | [[https://www.uniprot.org/uniprot/MET_HUMAN MET_HUMAN]] Note=Activation of MET after rearrangement with the TPR gene produces an oncogenic protein. Note=Defects in MET may be associated with gastric cancer. Defects in MET are a cause of hepatocellular carcinoma (HCC) [MIM:[https://omim.org/entry/114550 114550]].<ref>PMID:9927037</ref> Defects in MET are a cause of renal cell carcinoma papillary (RCCP) [MIM:[https://omim.org/entry/605074 605074]]. It is a subtype of renal cell carcinoma tending to show a tubulo-papillary architecture formed by numerous, irregular, finger-like projections of connective tissue. Renal cell carcinoma is a heterogeneous group of sporadic or hereditary carcinoma derived from cells of the proximal renal tubular epithelium. It is subclassified into common renal cell carcinoma (clear cell, non-papillary carcinoma), papillary renal cell carcinoma, chromophobe renal cell carcinoma, collecting duct carcinoma with medullary carcinoma of the kidney, and unclassified renal cell carcinoma.<ref>PMID:9140397</ref> <ref>PMID:9563489</ref> <ref>PMID:10433944</ref> <ref>PMID:10417759</ref> <ref>PMID:10327054</ref> Note=A common allele in the promoter region of the MET shows genetic association with susceptibility to autism in some families. Functional assays indicate a decrease in MET promoter activity and altered binding of specific transcription factor complexes. Note=MET activating mutations may be involved in the development of a highly malignant, metastatic syndrome known as cancer of unknown primary origin (CUP) or primary occult malignancy. Systemic neoplastic spread is generally a late event in cancer progression. However, in some instances, distant dissemination arises at a very early stage, so that metastases reach clinical relevance before primary lesions. Sometimes, the primary lesions cannot be identified in spite of the progresses in the diagnosis of malignancies.<ref>PMID:20949619</ref> | ||
== Function == | == Function == | ||
[[ | [[https://www.uniprot.org/uniprot/MET_HUMAN MET_HUMAN]] Receptor tyrosine kinase that transduces signals from the extracellular matrix into the cytoplasm by binding to hepatocyte growth factor/HGF ligand. Regulates many physiological processes including proliferation, scattering, morphogenesis and survival. Ligand binding at the cell surface induces autophosphorylation of MET on its intracellular domain that provides docking sites for downstream signaling molecules. Following activation by ligand, interacts with the PI3-kinase subunit PIK3R1, PLCG1, SRC, GRB2, STAT3 or the adapter GAB1. Recruitment of these downstream effectors by MET leads to the activation of several signaling cascades including the RAS-ERK, PI3 kinase-AKT, or PLCgamma-PKC. The RAS-ERK activation is associated with the morphogenetic effects while PI3K/AKT coordinates prosurvival effects. During embryonic development, MET signaling plays a role in gastrulation, development and migration of muscles and neuronal precursors, angiogenesis and kidney formation. In adults, participates in wound healing as well as organ regeneration and tissue remodeling. Promotes also differentiation and proliferation of hematopoietic cells.<ref>PMID:1846706</ref> <ref>PMID:8182137</ref> <ref>PMID:15314156</ref> Acts as a receptor for Listeria internalin inlB, mediating entry of the pathogen into cells.<ref>PMID:1846706</ref> <ref>PMID:8182137</ref> <ref>PMID:15314156</ref> | ||
<div style="background-color:#fffaf0;"> | <div style="background-color:#fffaf0;"> | ||
== Publication Abstract from PubMed == | == Publication Abstract from PubMed == | ||
Line 24: | Line 22: | ||
==See Also== | ==See Also== | ||
*[[Hepatocyte growth factor receptor|Hepatocyte growth factor receptor]] | *[[Hepatocyte growth factor receptor 3D structures|Hepatocyte growth factor receptor 3D structures]] | ||
== References == | == References == | ||
<references/> | <references/> | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
[[Category: | [[Category: Homo sapiens]] | ||
[[Category: | [[Category: Large Structures]] | ||
[[Category: Stout | [[Category: Stout SL]] | ||
[[Category: Wang | [[Category: Wang Y]] | ||
Revision as of 10:08, 28 September 2022
Crystal structure of c-Met in complex with LY2801653Crystal structure of c-Met in complex with LY2801653
Structural highlights
Disease[MET_HUMAN] Note=Activation of MET after rearrangement with the TPR gene produces an oncogenic protein. Note=Defects in MET may be associated with gastric cancer. Defects in MET are a cause of hepatocellular carcinoma (HCC) [MIM:114550].[1] Defects in MET are a cause of renal cell carcinoma papillary (RCCP) [MIM:605074]. It is a subtype of renal cell carcinoma tending to show a tubulo-papillary architecture formed by numerous, irregular, finger-like projections of connective tissue. Renal cell carcinoma is a heterogeneous group of sporadic or hereditary carcinoma derived from cells of the proximal renal tubular epithelium. It is subclassified into common renal cell carcinoma (clear cell, non-papillary carcinoma), papillary renal cell carcinoma, chromophobe renal cell carcinoma, collecting duct carcinoma with medullary carcinoma of the kidney, and unclassified renal cell carcinoma.[2] [3] [4] [5] [6] Note=A common allele in the promoter region of the MET shows genetic association with susceptibility to autism in some families. Functional assays indicate a decrease in MET promoter activity and altered binding of specific transcription factor complexes. Note=MET activating mutations may be involved in the development of a highly malignant, metastatic syndrome known as cancer of unknown primary origin (CUP) or primary occult malignancy. Systemic neoplastic spread is generally a late event in cancer progression. However, in some instances, distant dissemination arises at a very early stage, so that metastases reach clinical relevance before primary lesions. Sometimes, the primary lesions cannot be identified in spite of the progresses in the diagnosis of malignancies.[7] Function[MET_HUMAN] Receptor tyrosine kinase that transduces signals from the extracellular matrix into the cytoplasm by binding to hepatocyte growth factor/HGF ligand. Regulates many physiological processes including proliferation, scattering, morphogenesis and survival. Ligand binding at the cell surface induces autophosphorylation of MET on its intracellular domain that provides docking sites for downstream signaling molecules. Following activation by ligand, interacts with the PI3-kinase subunit PIK3R1, PLCG1, SRC, GRB2, STAT3 or the adapter GAB1. Recruitment of these downstream effectors by MET leads to the activation of several signaling cascades including the RAS-ERK, PI3 kinase-AKT, or PLCgamma-PKC. The RAS-ERK activation is associated with the morphogenetic effects while PI3K/AKT coordinates prosurvival effects. During embryonic development, MET signaling plays a role in gastrulation, development and migration of muscles and neuronal precursors, angiogenesis and kidney formation. In adults, participates in wound healing as well as organ regeneration and tissue remodeling. Promotes also differentiation and proliferation of hematopoietic cells.[8] [9] [10] Acts as a receptor for Listeria internalin inlB, mediating entry of the pathogen into cells.[11] [12] [13] Publication Abstract from PubMedThe HGF/MET signaling pathway regulates a wide variety of normal cellular functions that can be subverted to support neoplasia, including cell proliferation, survival, apoptosis, scattering and motility, invasion, and angiogenesis. MET over-expression (with or without gene amplification), aberrant autocrine or paracrine ligand production, and missense MET mutations are mechanisms that lead to activation of the MET pathway in tumors and are associated with poor prognostic outcome. We report here preclinical development of a potent, orally bioavailable, small-molecule inhibitor LY2801653 targeting MET kinase. LY2801653 is a type-II ATP competitive, slow-off inhibitor of MET tyrosine kinase with a dissociation constant (K(i)) of 2 nM, a pharmacodynamic residence time (K(off)) of 0.00132 min(-1) and t(1/2) of 525 min. LY2801653 demonstrated in vitro effects on MET pathway-dependent cell scattering and cell proliferation; in vivo anti-tumor effects in MET amplified (MKN45), MET autocrine (U-87MG, and KP4) and MET over-expressed (H441) xenograft models; and in vivo vessel normalization effects. LY2801653 also maintained potency against 13 MET variants, each bearing a single-point mutation. In subsequent nonclinical characterization, LY2801653 was found to have potent activity against several other receptor tyrosine oncokinases including MST1R, FLT3, AXL, MERTK, TEK, ROS1, DDR1/2 and against the serine/threonine kinases MKNK1/2. The potential value of MET and other inhibited targets within a number of malignancies (such as colon, bile ducts, and lung) is discussed. LY2801653 is currently in phase 1 clinical testing in patients with advanced cancer (trial I3O-MC-JSBA, NCT01285037). LY2801653 is an orally bioavailable multi-kinase inhibitor with potent activity against MET, MST1R, and other oncoproteins, and displays anti-tumor activities in mouse xenograft models.,Yan SB, Peek VL, Ajamie R, Buchanan SG, Graff JR, Heidler SA, Hui YH, Huss KL, Konicek BW, Manro JR, Shih C, Stewart JA, Stewart TR, Stout SL, Uhlik MT, Um SL, Wang Y, Wu W, Yan L, Yang WJ, Zhong B, Walgren RA Invest New Drugs. 2012 Dec 29. PMID:23275061[14] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|