3utx: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
==Crystal structure of bacteriorhodopsin mutant T46A== | ==Crystal structure of bacteriorhodopsin mutant T46A== | ||
<StructureSection load='3utx' size='340' side='right' caption='[[3utx]], [[Resolution|resolution]] 2.47Å' scene=''> | <StructureSection load='3utx' size='340' side='right'caption='[[3utx]], [[Resolution|resolution]] 2.47Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[3utx]] is a 2 chain structure with sequence from [ | <table><tr><td colspan='2'>[[3utx]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Halsa Halsa]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3UTX OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3UTX FirstGlance]. <br> | ||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=D12:DODECANE'>D12</scene>, <scene name='pdbligand=RET:RETINAL'>RET</scene></td></tr> | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=D12:DODECANE'>D12</scene>, <scene name='pdbligand=RET:RETINAL'>RET</scene></td></tr> | ||
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[3utv|3utv]], [[3utw|3utw]], [[3uty|3uty]]</td></tr> | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[3utv|3utv]], [[3utw|3utw]], [[3uty|3uty]]</div></td></tr> | ||
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">bop, VNG_1467G ([ | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">bop, VNG_1467G ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=64091 HALSA])</td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[ | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3utx FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3utx OCA], [https://pdbe.org/3utx PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3utx RCSB], [https://www.ebi.ac.uk/pdbsum/3utx PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3utx ProSAT]</span></td></tr> | ||
</table> | </table> | ||
== Function == | == Function == | ||
[[ | [[https://www.uniprot.org/uniprot/BACR_HALSA BACR_HALSA]] Light-driven proton pump. | ||
<div style="background-color:#fffaf0;"> | <div style="background-color:#fffaf0;"> | ||
== Publication Abstract from PubMed == | == Publication Abstract from PubMed == | ||
Line 22: | Line 22: | ||
==See Also== | ==See Also== | ||
*[[Bacteriorhodopsin|Bacteriorhodopsin]] | *[[Bacteriorhodopsin 3D structures|Bacteriorhodopsin 3D structures]] | ||
== References == | == References == | ||
<references/> | <references/> | ||
Line 28: | Line 28: | ||
</StructureSection> | </StructureSection> | ||
[[Category: Halsa]] | [[Category: Halsa]] | ||
[[Category: Large Structures]] | |||
[[Category: Bowie, J U]] | [[Category: Bowie, J U]] | ||
[[Category: Cao, Z]] | [[Category: Cao, Z]] |
Revision as of 11:06, 20 July 2022
Crystal structure of bacteriorhodopsin mutant T46ACrystal structure of bacteriorhodopsin mutant T46A
Structural highlights
Function[BACR_HALSA] Light-driven proton pump. Publication Abstract from PubMedThe intricate functions of membrane proteins would not be possible without bends or breaks that are remarkably common in transmembrane helices. The frequent helix distortions are nevertheless surprising because backbone hydrogen bonds should be strong in an apolar membrane, potentially rigidifying helices. It is therefore mysterious how distortions can be generated by the evolutionary currency of random point mutations. Here we show that we can engineer a transition between distinct distorted helix conformations in bacteriorhodopsin with a single-point mutation. Moreover, we estimate the energetic cost of the conformational transitions to be smaller than 1 kcal/mol. We propose that the low energy of distortion is explained in part by the shifting of backbone hydrogen bonding partners. Consistent with this view, extensive backbone hydrogen bond shifts occur during helix conformational changes that accompany functional cycles. Our results explain how evolution has been able to liberally exploit transmembrane helix bending for the optimization of membrane protein structure, function, and dynamics. Shifting hydrogen bonds may produce flexible transmembrane helices.,Cao Z, Bowie JU Proc Natl Acad Sci U S A. 2012 May 22;109(21):8121-6. Epub 2012 May 7. PMID:22566663[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|