Sandbox Reserved 426: Difference between revisions
No edit summary |
No edit summary |
||
Line 10: | Line 10: | ||
==Introduction== | ==Introduction== | ||
TThe intercalation of DNA and drug compounds has been studied thoroughly as a inhibitor of tumorigenesis or pathogenesis which is key in the progression of most cancers. Most intercalated ligands are aromatic compounds that bond between base pairs through non-covalent interactions. In this case the nucleotide d(CGTACG) was complexed with an anthraquinone derivative. This derivative, 1,5-bis[3-(diethylamino)propionamido]anthracene-9,10-dione, provided researchers with the information needed to solve <scene name='48/483883/Rainbow_sheet/1'>the structure of the complex</scene> using X-Ray crystallography. Along with the structure, the important forces involved in binding were analyzed and described as heavily reliant on cations. Furthermore, the binding site seems to be specific to anthracene and similar molecules. Therefore, the potential for drug compounds to be carried by this nucleotide complex requires further research with respect to binding affinity, solubility, toxicology, and specificity with other analogues. | |||
The 1,5-bis[3-(diethylamino)propionamido]anthracene-9,10-dione complex was studied using synchrotron radiation, which is the energy emitted from particles traveling near the speed of light, which identified ionic sites and areas of high electron density. The binding site of the drug compound is one of these high electron density areas, and was a key component in it's identification. | |||
==Overall Structure== | ==Overall Structure== | ||