Transfer RNA (tRNA): Difference between revisions
Michal Harel (talk | contribs) No edit summary |
Michal Harel (talk | contribs) No edit summary |
||
Line 5: | Line 5: | ||
Cells usually have sets of tRNAs corresponding to all 20 standard amino acids, with anticodons capable of pairing with the 61 "sense" or coding codons. The secondary structure of tRNA is well conserved throughout evolution, with a classical cloverleaf fold comprising four stems. In three dimensions, tRNA adopt an "L" shape, with the acceptor end on one end and the anticodon on the other end. | Cells usually have sets of tRNAs corresponding to all 20 standard amino acids, with anticodons capable of pairing with the 61 "sense" or coding codons. The secondary structure of tRNA is well conserved throughout evolution, with a classical cloverleaf fold comprising four stems. In three dimensions, tRNA adopt an "L" shape, with the acceptor end on one end and the anticodon on the other end. | ||
After incorporation of the amino acid into the nascent protein chain by the ribosome, tRNA need to be esterified again ('charged') with their cognate amino acid, a process which is catalysed by a family of enzymes called [[ | After incorporation of the amino acid into the nascent protein chain by the ribosome, tRNA need to be esterified again ('charged') with their cognate amino acid, a process which is catalysed by a family of enzymes called [[Aminoacyl tRNA Synthetase]]s. | ||
==Modified nucleotides== | ==Modified nucleotides== |