1u9r: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
==Crystal Structure of Staphylococcal Nuclease mutant V66E/P117G/H124L/S128A at Room Temperature== | ==Crystal Structure of Staphylococcal Nuclease mutant V66E/P117G/H124L/S128A at Room Temperature== | ||
<StructureSection load='1u9r' size='340' side='right' caption='[[1u9r]], [[Resolution|resolution]] 2.10Å' scene=''> | <StructureSection load='1u9r' size='340' side='right' caption='[[1u9r]], [[Resolution|resolution]] 2.10Å' scene=''> | ||
Line 6: | Line 7: | ||
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">nuc ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=1280 "Micrococcus aureus" (Rosenbach 1884) Zopf 1885])</td></tr> | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">nuc ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=1280 "Micrococcus aureus" (Rosenbach 1884) Zopf 1885])</td></tr> | ||
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Micrococcal_nuclease Micrococcal nuclease], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.1.31.1 3.1.31.1] </span></td></tr> | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Micrococcal_nuclease Micrococcal nuclease], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.1.31.1 3.1.31.1] </span></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1u9r FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1u9r OCA], [http://pdbe.org/1u9r PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=1u9r RCSB], [http://www.ebi.ac.uk/pdbsum/1u9r PDBsum]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1u9r FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1u9r OCA], [http://pdbe.org/1u9r PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=1u9r RCSB], [http://www.ebi.ac.uk/pdbsum/1u9r PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=1u9r ProSAT]</span></td></tr> | ||
</table> | </table> | ||
== Function == | == Function == | ||
Line 29: | Line 30: | ||
</div> | </div> | ||
<div class="pdbe-citations 1u9r" style="background-color:#fffaf0;"></div> | <div class="pdbe-citations 1u9r" style="background-color:#fffaf0;"></div> | ||
== References == | == References == | ||
<references/> | <references/> |
Revision as of 16:41, 12 October 2017
Crystal Structure of Staphylococcal Nuclease mutant V66E/P117G/H124L/S128A at Room TemperatureCrystal Structure of Staphylococcal Nuclease mutant V66E/P117G/H124L/S128A at Room Temperature
Structural highlights
Function[NUC_STAAU] Enzyme that catalyzes the hydrolysis of both DNA and RNA at the 5' position of the phosphodiester bond. Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe ionizable amino acid side chains of proteins are usually located at the surface. However, in some proteins an ionizable group is embedded in an apolar internal region. Such buried ionizable groups destabilize the protein and may trigger conformational changes in response to pH variations. Because of the prohibitive energetic cost of transferring a charged group from water to an apolar medium, other stabilizing factors must be invoked, such as ionization-induced water penetration or structural changes. To examine the role of water penetration, we have measured the 17O and 2H magnetic relaxation dispersions (MRD) for the V66E and V66K mutants of staphylococcal nuclease, where glutamic acid and lysine residues are buried in predominantly apolar environments. At neutral pH, where these residues are uncharged, we find no evidence of buried water molecules near the mutation site. This contrasts with a previous cryogenic crystal structure of the V66E mutant, but is consistent with the room-temperature crystal structure reported here. MRD measurements at different pH values show that ionization of Glu-66 or Lys-66 is not accompanied by penetration of long-lived water molecules. On the other hand, the MRD data are consistent with a local conformational change in response to ionization of the internal residues. Stabilization of internal charges in a protein: water penetration or conformational change?,Denisov VP, Schlessman JL, Garcia-Moreno E B, Halle B Biophys J. 2004 Dec;87(6):3982-94. Epub 2004 Sep 17. PMID:15377517[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|