1my7: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
==NF-kappaB p65 subunit dimerization domain homodimer N202R mutation== | ==NF-kappaB p65 subunit dimerization domain homodimer N202R mutation== | ||
<StructureSection load='1my7' size='340' side='right' caption='[[1my7]], [[Resolution|resolution]] 1.49Å' scene=''> | <StructureSection load='1my7' size='340' side='right' caption='[[1my7]], [[Resolution|resolution]] 1.49Å' scene=''> | ||
Line 5: | Line 6: | ||
</td></tr><tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1bft|1bft]], [[1my5|1my5]]</td></tr> | </td></tr><tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1bft|1bft]], [[1my5|1my5]]</td></tr> | ||
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">RELA ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=10090 LK3 transgenic mice])</td></tr> | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">RELA ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=10090 LK3 transgenic mice])</td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1my7 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1my7 OCA], [http://pdbe.org/1my7 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=1my7 RCSB], [http://www.ebi.ac.uk/pdbsum/1my7 PDBsum]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1my7 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1my7 OCA], [http://pdbe.org/1my7 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=1my7 RCSB], [http://www.ebi.ac.uk/pdbsum/1my7 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=1my7 ProSAT]</span></td></tr> | ||
</table> | </table> | ||
== Function == | == Function == | ||
Line 13: | Line 14: | ||
Check<jmol> | Check<jmol> | ||
<jmolCheckbox> | <jmolCheckbox> | ||
<scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/my/1my7_consurf.spt"</scriptWhenChecked> | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/my/1my7_consurf.spt"</scriptWhenChecked> | ||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | ||
<text>to colour the structure by Evolutionary Conservation</text> | <text>to colour the structure by Evolutionary Conservation</text> | ||
Line 28: | Line 29: | ||
</div> | </div> | ||
<div class="pdbe-citations 1my7" style="background-color:#fffaf0;"></div> | <div class="pdbe-citations 1my7" style="background-color:#fffaf0;"></div> | ||
== References == | == References == | ||
<references/> | <references/> |
Revision as of 10:47, 31 January 2018
NF-kappaB p65 subunit dimerization domain homodimer N202R mutationNF-kappaB p65 subunit dimerization domain homodimer N202R mutation
Structural highlights
Function[TF65_MOUSE] NF-kappa-B is a pleiotropic transcription factor present in almost all cell types and is the endpoint of a series of signal transduction events that are initiated by a vast array of stimuli related to many biological processes such as inflammation, immunity, differentiation, cell growth, tumorigenesis and apoptosis. NF-kappa-B is a homo- or heterodimeric complex formed by the Rel-like domain-containing proteins RELA/p65, RELB, NFKB1/p105, NFKB1/p50, REL and NFKB2/p52 and the heterodimeric p65-p50 complex appears to be most abundant one. The dimers bind at kappa-B sites in the DNA of their target genes and the individual dimers have distinct preferences for different kappa-B sites that they can bind with distinguishable affinity and specificity. Different dimer combinations act as transcriptional activators or repressors, respectively. NF-kappa-B is controlled by various mechanisms of post-translational modification and subcellular compartmentalization as well as by interactions with other cofactors or corepressors. NF-kappa-B complexes are held in the cytoplasm in an inactive state complexed with members of the NF-kappa-B inhibitor (I-kappa-B) family. In a conventional activation pathway, I-kappa-B is phosphorylated by I-kappa-B kinases (IKKs) in response to different activators, subsequently degraded thus liberating the active NF-kappa-B complex which translocates to the nucleus. NF-kappa-B heterodimeric p65-p50 and p65-c-Rel complexes are transcriptional activators. The NF-kappa-B p65-p65 complex appears to be involved in invasin-mediated activation of IL-8 expression (By similarity). The inhibitory effect of I-kappa-B upon NF-kappa-B the cytoplasm is exerted primarily through the interaction with p65. p65 shows a weak DNA-binding site which could contribute directly to DNA binding in the NF-kappa-B complex. Associates with chromatin at the NF-kappa-B promoter region via association with DDX1.[1] [2] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedIkappaBalpha inhibits transcription factor NF-kappaB activity by specific binding to NF-kappaB heterodimers composed of p65 and p50 subunits. It binds with slightly lower affinity to p65 homodimers and with significantly lower affinity to homodimers of p50. We have employed a structure-based mutagenesis approach coupled with protein-protein interaction assays to determine the source of this dimer selectivity exhibited by IkappaBalpha. Mutation of amino acid residues in IkappaBalpha that contact NF-kappaB only marginally affects complex binding affinity, indicating a lack of hot spots in NF-kappaB/IkappaBalpha complex formation. Conversion of the weak binding NF-kappaB p50 homodimer into a high affinity binding partner of IkappaBalpha requires transfer of both the NLS polypeptide and amino acid residues Asn202 and Ser203 from the NF-kappaB p65 subunit. Involvement of Asn202 and Ser203 in complex formation is surprising as these amino acid residues occupy solvent exposed positions at a distance of 20A from IkappaBalpha in the crystal structures. However, the same amino acid residue positions have been genetically isolated as determinants of binding specificity in a homologous system in Drosophila. X-ray crystallographic and solvent accessibility experiments suggest that these solvent-exposed amino acid residues contribute to NF-kappaB/IkappaBalpha complex formation by modulating the NF-kappaB p65 subunit NLS polypeptide. Solvent exposed non-contacting amino acids play a critical role in NF-kappaB/IkappaBalpha complex formation.,Huxford T, Mishler D, Phelps CB, Huang DB, Sengchanthalangsy LL, Reeves R, Hughes CA, Komives EA, Ghosh G J Mol Biol. 2002 Dec 6;324(4):587-97. PMID:12460563[3] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|