2gcf: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
==Solution structure of the N-terminal domain of the coppper(I) ATPase PacS in its apo form== | ==Solution structure of the N-terminal domain of the coppper(I) ATPase PacS in its apo form== | ||
<StructureSection load='2gcf' size='340' side='right' caption='[[2gcf]], [[NMR_Ensembles_of_Models | 21 NMR models]]' scene=''> | <StructureSection load='2gcf' size='340' side='right' caption='[[2gcf]], [[NMR_Ensembles_of_Models | 21 NMR models]]' scene=''> | ||
Line 4: | Line 5: | ||
<table><tr><td colspan='2'>[[2gcf]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Aphanocapsa_sp._(strain_n-1) Aphanocapsa sp. (strain n-1)]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2GCF OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2GCF FirstGlance]. <br> | <table><tr><td colspan='2'>[[2gcf]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Aphanocapsa_sp._(strain_n-1) Aphanocapsa sp. (strain n-1)]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2GCF OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2GCF FirstGlance]. <br> | ||
</td></tr><tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">pacS ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=1148 Aphanocapsa sp. (strain N-1)])</td></tr> | </td></tr><tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">pacS ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=1148 Aphanocapsa sp. (strain N-1)])</td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2gcf FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2gcf OCA], [http://pdbe.org/2gcf PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=2gcf RCSB], [http://www.ebi.ac.uk/pdbsum/2gcf PDBsum]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2gcf FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2gcf OCA], [http://pdbe.org/2gcf PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=2gcf RCSB], [http://www.ebi.ac.uk/pdbsum/2gcf PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=2gcf ProSAT]</span></td></tr> | ||
</table> | </table> | ||
== Function == | == Function == | ||
Line 12: | Line 13: | ||
Check<jmol> | Check<jmol> | ||
<jmolCheckbox> | <jmolCheckbox> | ||
<scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/gc/2gcf_consurf.spt"</scriptWhenChecked> | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/gc/2gcf_consurf.spt"</scriptWhenChecked> | ||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | ||
<text>to colour the structure by Evolutionary Conservation</text> | <text>to colour the structure by Evolutionary Conservation</text> |
Revision as of 10:03, 20 June 2018
Solution structure of the N-terminal domain of the coppper(I) ATPase PacS in its apo formSolution structure of the N-terminal domain of the coppper(I) ATPase PacS in its apo form
Structural highlights
Function[ATCS_SYNY3] May play a role in the osmotic adaptation (By similarity). Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe thylakoid compartments of plant chloroplasts are a vital destination for copper. Copper is needed to form holo-plastocyanin, which must shuttle electrons between photosystems to convert light into biologically useful chemical energy. Copper can bind tightly to proteins, so it has been hypothesized that copper partitions onto ligand-exchange pathways to reach intracellular locations without inflicting damage en route. The copper metallochaperone Atx1 of chloroplast-related cyanobacteria (ScAtx1) engages in bacterial two-hybrid interactions with N-terminal domains of copper-transporting ATPases CtaA (cell import) and PacS (thylakoid import). Here we visualize copper delivery. The N-terminal domain PacS(N) has a ferredoxin-like fold that forms copper-dependent heterodimers with ScAtx1. Removal of copper, by the addition of the cuprous-ion chelator bathocuproine disulfonate, disrupts this heterodimer, as shown from a reduction of the overall tumbling rate of the protein mixture. The NMR spectral changes of the heterodimer versus the separate proteins reveal that loops 1, 3, and 5 (the carboxyl tail) of the ScAtx1 Cu(I) site switch to an apo-like configuration in the heterodimer. NMR data ((2)J(NH) couplings in the imidazole ring of (15)N ScAtx1 His-61) also show that His-61, bound to copper(I) in [Cu(I)ScAtx1](2), is not coordinated to copper in the heterodimer. A model for the PacS(N)/Cu(I)/ScAtx1 complex is presented. Contact with PacS(N) induces change to the ScAtx1 copper-coordination sphere that drives copper release for thylakoid import. These data also elaborate on the mechanism to keep copper(I) out of the ZiaA(N) ATPase zinc sites. The delivery of copper for thylakoid import observed by NMR.,Banci L, Bertini I, Ciofi-Baffoni S, Kandias NG, Robinson NJ, Spyroulias GA, Su XC, Tottey S, Vanarotti M Proc Natl Acad Sci U S A. 2006 May 30;103(22):8320-5. Epub 2006 May 17. PMID:16707580[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences |
|