1v26: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
==Crystal structure of tt0168 from Thermus thermophilus HB8== | ==Crystal structure of tt0168 from Thermus thermophilus HB8== | ||
<StructureSection load='1v26' size='340' side='right' caption='[[1v26]], [[Resolution|resolution]] 2.50Å' scene=''> | <StructureSection load='1v26' size='340' side='right' caption='[[1v26]], [[Resolution|resolution]] 2.50Å' scene=''> | ||
Line 6: | Line 7: | ||
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1v25|1v25]]</td></tr> | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1v25|1v25]]</td></tr> | ||
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Long-chain-fatty-acid--CoA_ligase Long-chain-fatty-acid--CoA ligase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=6.2.1.3 6.2.1.3] </span></td></tr> | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Long-chain-fatty-acid--CoA_ligase Long-chain-fatty-acid--CoA ligase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=6.2.1.3 6.2.1.3] </span></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1v26 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1v26 OCA], [http://pdbe.org/1v26 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=1v26 RCSB], [http://www.ebi.ac.uk/pdbsum/1v26 PDBsum], [http://www.topsan.org/Proteins/RSGI/1v26 TOPSAN]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1v26 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1v26 OCA], [http://pdbe.org/1v26 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=1v26 RCSB], [http://www.ebi.ac.uk/pdbsum/1v26 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=1v26 ProSAT], [http://www.topsan.org/Proteins/RSGI/1v26 TOPSAN]</span></td></tr> | ||
</table> | </table> | ||
== Evolutionary Conservation == | == Evolutionary Conservation == | ||
Line 12: | Line 13: | ||
Check<jmol> | Check<jmol> | ||
<jmolCheckbox> | <jmolCheckbox> | ||
<scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/v2/1v26_consurf.spt"</scriptWhenChecked> | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/v2/1v26_consurf.spt"</scriptWhenChecked> | ||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | ||
<text>to colour the structure by Evolutionary Conservation</text> | <text>to colour the structure by Evolutionary Conservation</text> |
Revision as of 10:48, 28 March 2018
Crystal structure of tt0168 from Thermus thermophilus HB8Crystal structure of tt0168 from Thermus thermophilus HB8
Structural highlights
Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedLong chain fatty acyl-CoA synthetases are responsible for fatty acid degradation as well as physiological regulation of cellular functions via the production of long chain fatty acyl-CoA esters. We report the first crystal structures of long chain fatty acyl-CoA synthetase homodimer (LC-FACS) from Thermus thermophilus HB8 (ttLC-FACS), including complexes with the ATP analogue adenosine 5'-(beta,gamma-imido) triphosphate (AMP-PNP) and myristoyl-AMP. ttLC-FACS is a member of the adenylate forming enzyme superfamily that catalyzes the ATP-dependent acylation of fatty acid in a two-step reaction. The first reaction step was shown to propagate in AMP-PNP complex crystals soaked with myristate solution. Myristoyl-AMP was identified as the intermediate. The AMP-PNP and the myristoyl-AMP complex structures show an identical closed conformation of the small C-terminal domains, whereas the uncomplexed form shows a variety of open conformations. Upon ATP binding, the fatty acid-binding tunnel gated by an aromatic residue opens to the ATP-binding site. The gated fatty acid-binding tunnel appears only to allow one-way movement of the fatty acid during overall catalysis. The protein incorporates a hydrophobic branch from the fatty acid-binding tunnel that is responsible for substrate specificity. Based on these high resolution crystal structures, we propose a unidirectional Bi Uni Uni Bi Ping-Pong mechanism for the two-step acylation by ttLC-FACS. Structural basis of the substrate-specific two-step catalysis of long chain fatty acyl-CoA synthetase dimer.,Hisanaga Y, Ago H, Nakagawa N, Hamada K, Ida K, Yamamoto M, Hori T, Arii Y, Sugahara M, Kuramitsu S, Yokoyama S, Miyano M J Biol Chem. 2004 Jul 23;279(30):31717-26. Epub 2004 May 15. PMID:15145952[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|