2knv: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
==NMR dimer structure of the UBA domain of p62 (SQSTM1)== | ==NMR dimer structure of the UBA domain of p62 (SQSTM1)== | ||
<StructureSection load='2knv' size='340' side='right' caption='[[2knv]], [[NMR_Ensembles_of_Models | 10 NMR models]]' scene=''> | <StructureSection load='2knv' size='340' side='right' caption='[[2knv]], [[NMR_Ensembles_of_Models | 10 NMR models]]' scene=''> | ||
Line 5: | Line 6: | ||
</td></tr><tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[2k0b|2k0b]], [[2jy7|2jy7]]</td></tr> | </td></tr><tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[2k0b|2k0b]], [[2jy7|2jy7]]</td></tr> | ||
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">SQSTM1 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr> | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">SQSTM1 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2knv FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2knv OCA], [http://pdbe.org/2knv PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=2knv RCSB], [http://www.ebi.ac.uk/pdbsum/2knv PDBsum]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2knv FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2knv OCA], [http://pdbe.org/2knv PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=2knv RCSB], [http://www.ebi.ac.uk/pdbsum/2knv PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=2knv ProSAT]</span></td></tr> | ||
</table> | </table> | ||
== Disease == | == Disease == | ||
Line 15: | Line 16: | ||
Check<jmol> | Check<jmol> | ||
<jmolCheckbox> | <jmolCheckbox> | ||
<scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/kn/2knv_consurf.spt"</scriptWhenChecked> | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/kn/2knv_consurf.spt"</scriptWhenChecked> | ||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | ||
<text>to colour the structure by Evolutionary Conservation</text> | <text>to colour the structure by Evolutionary Conservation</text> | ||
</jmolCheckbox> | </jmolCheckbox> | ||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/ | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2knv ConSurf]. | ||
<div style="clear:both"></div> | <div style="clear:both"></div> | ||
<div style="background-color:#fffaf0;"> | <div style="background-color:#fffaf0;"> |
Revision as of 10:52, 25 July 2018
NMR dimer structure of the UBA domain of p62 (SQSTM1)NMR dimer structure of the UBA domain of p62 (SQSTM1)
Structural highlights
Disease[SQSTM_HUMAN] Defects in SQSTM1 are a cause of Paget disease of bone (PDB) [MIM:602080]. PDB is a metabolic bone disease affecting the axial skeleton and characterized by focal areas of increased and disorganized bone turn-over due to activated osteoclasts. Manifestations of the disease include bone pain, deformity, pathological fractures, deafness, neurological complications and increased risk of osteosarcoma. PDB is a chronic disease affecting 2 to 3% of the population above the age of 40 years.[1] [2] [3] [4] [5] [6] [7] [8] Note=In a cell model for Huntington disease (HD), appears to form a shell surrounding aggregates of mutant HTT that may protect cells from apoptosis, possibly by recruiting autophagosomal components to the polyubiquitinylated protein aggregates.[9] Function[SQSTM_HUMAN] Required both for the formation and autophagic degradation of polyubiquitin-containing bodies, called ALIS (aggresome-like induced structures). Links ALIS to the autophagic machinery via direct interaction with MAP1 LC3 family members. May regulate the activation of NFKB1 by TNF-alpha, nerve growth factor (NGF) and interleukin-1. May play a role in titin/TTN downstream signaling in muscle cells. May regulate signaling cascades through ubiquitination. Adapter that mediates the interaction between TRAF6 and CYLD (By similarity). May be involved in cell differentiation, apoptosis, immune response and regulation of K(+) channels.[10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe ubiquitin (Ub)-binding p62 scaffold protein (encoded by the SQSTM1 gene) regulates a diverse range of signalling pathways leading to activation of the nuclear factor kappa B (NF-kappaB) family of transcription factors and is an important regulator of macroautophagy. Mutations within the gene encoding p62 are commonly found in patients with Paget's disease of bone and largely cluster within the C-terminal ubiquitin-associated (UBA) domain, impairing its ability to bind Ub, resulting in dysregulated NF-kappaB signalling. However, precisely how Ub-binding is regulated at the molecular level is unclear. NMR relaxation dispersion experiments, coupled with concentration-dependent NMR, CD, isothermal titration calorimetry and fluorescence kinetic measurements, reveal that the p62 UBA domain forms a highly stable dimer (K(dim) approximately 4-12 microM at 298 K). NMR analysis shows that the dimer interface partially occludes the Ub-binding surface, particularly at the C-terminus of helix 3, making UBA dimerisation and Ub-binding mutually exclusive processes. Somewhat unusually, the monomeric UBA appears to be the biologically active form and the dimer appears to be the inactive one. Engineered point mutations in loop 1 (E409K and G410K) are shown to destabilise the dimer interface, lead to a higher proportion of the bound monomer and, in NF-kappaB luciferase reporter assays, are associated with reduced NF-kappaB activity compared with wt-p62. Dimerisation of the UBA domain of p62 inhibits ubiquitin binding and regulates NF-kappaB signalling.,Long J, Garner TP, Pandya MJ, Craven CJ, Chen P, Shaw B, Williamson MP, Layfield R, Searle MS J Mol Biol. 2010 Feb 12;396(1):178-94. Epub 2009 Nov 17. PMID:19931284[21] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|