1kpk: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
Line 17: Line 17:
     <text>to colour the structure by Evolutionary Conservation</text>
     <text>to colour the structure by Evolutionary Conservation</text>
   </jmolCheckbox>
   </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf].
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1kpk ConSurf].
<div style="clear:both"></div>
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
<div style="background-color:#fffaf0;">

Revision as of 23:59, 9 February 2016

Crystal Structure of the ClC Chloride Channel from E. coliCrystal Structure of the ClC Chloride Channel from E. coli

Structural highlights

1kpk is a 6 chain structure with sequence from "bacillus_coli"_migula_1895 "bacillus coli" migula 1895. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Gene:yadQ ("Bacillus coli" Migula 1895)
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum

Function

[CLCA_ECOLI] Proton-coupled chloride transporter. Functions as antiport system and exchanges two chloride ions for 1 proton. Probably acts as an electrical shunt for an outwardly-directed proton pump that is linked to amino acid decarboxylation, as part of the extreme acid resistance (XAR) response.[1] [2] [3] [4] [5]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

The ClC chloride channels catalyse the selective flow of Cl- ions across cell membranes, thereby regulating electrical excitation in skeletal muscle and the flow of salt and water across epithelial barriers. Genetic defects in ClC Cl- channels underlie several familial muscle and kidney diseases. Here we present the X-ray structures of two prokaryotic ClC Cl- channels from Salmonella enterica serovar typhimurium and Escherichia coli at 3.0 and 3.5 A, respectively. Both structures reveal two identical pores, each pore being formed by a separate subunit contained within a homodimeric membrane protein. Individual subunits are composed of two roughly repeated halves that span the membrane with opposite orientations. This antiparallel architecture defines a selectivity filter in which a Cl- ion is stabilized by electrostatic interactions with alpha-helix dipoles and by chemical coordination with nitrogen atoms and hydroxyl groups. These findings provide a structural basis for further understanding the function of ClC Cl- channels, and establish the physical and chemical basis of their anion selectivity.

X-ray structure of a ClC chloride channel at 3.0 A reveals the molecular basis of anion selectivity.,Dutzler R, Campbell EB, Cadene M, Chait BT, MacKinnon R Nature. 2002 Jan 17;415(6869):287-94. PMID:11796999[6]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Iyer R, Iverson TM, Accardi A, Miller C. A biological role for prokaryotic ClC chloride channels. Nature. 2002 Oct 17;419(6908):715-8. PMID:12384697 doi:10.1038/nature01000
  2. Accardi A, Miller C. Secondary active transport mediated by a prokaryotic homologue of ClC Cl- channels. Nature. 2004 Feb 26;427(6977):803-7. PMID:14985752 doi:10.1038/nature02314
  3. Lobet S, Dutzler R. Ion-binding properties of the ClC chloride selectivity filter. EMBO J. 2006 Jan 11;25(1):24-33. Epub 2005 Dec 8. PMID:16341087
  4. Nguitragool W, Miller C. Uncoupling of a CLC Cl-/H+ exchange transporter by polyatomic anions. J Mol Biol. 2006 Sep 29;362(4):682-90. Epub 2006 Aug 14. PMID:16905147 doi:10.1016/j.jmb.2006.07.006
  5. Jayaram H, Accardi A, Wu F, Williams C, Miller C. Ion permeation through a Cl--selective channel designed from a CLC Cl-/H+ exchanger. Proc Natl Acad Sci U S A. 2008 Aug 12;105(32):11194-9. Epub 2008 Aug 4. PMID:18678918
  6. Dutzler R, Campbell EB, Cadene M, Chait BT, MacKinnon R. X-ray structure of a ClC chloride channel at 3.0 A reveals the molecular basis of anion selectivity. Nature. 2002 Jan 17;415(6869):287-94. PMID:11796999 doi:10.1038/415287a

1kpk, resolution 3.50Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA