2ae7: Difference between revisions
No edit summary |
No edit summary |
||
Line 4: | Line 4: | ||
|PDB= 2ae7 |SIZE=350|CAPTION= <scene name='initialview01'>2ae7</scene>, resolution 2.00Å | |PDB= 2ae7 |SIZE=350|CAPTION= <scene name='initialview01'>2ae7</scene>, resolution 2.00Å | ||
|SITE= | |SITE= | ||
|LIGAND= <scene name='pdbligand= | |LIGAND= <scene name='pdbligand=DIO:1,4-DIETHYLENE+DIOXIDE'>DIO</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=MAN:ALPHA-D-MANNOSE'>MAN</scene>, <scene name='pdbligand=MN:MANGANESE+(II)+ION'>MN</scene>, <scene name='pdbligand=NAG:N-ACETYL-D-GLUCOSAMINE'>NAG</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene>, <scene name='pdbligand=UDH:6-AMINOHEXYL-URIDINE-C1,5'-DIPHOSPHATE'>UDH</scene> | ||
|ACTIVITY= [http://en.wikipedia.org/wiki/N-acetyllactosamine_synthase N-acetyllactosamine synthase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.4.1.90 2.4.1.90] | |ACTIVITY= <span class='plainlinks'>[http://en.wikipedia.org/wiki/N-acetyllactosamine_synthase N-acetyllactosamine synthase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.4.1.90 2.4.1.90] </span> | ||
|GENE= B4GALT1, GGTB2 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 Homo sapiens]) | |GENE= B4GALT1, GGTB2 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 Homo sapiens]) | ||
|DOMAIN= | |||
|RELATEDENTRY=[[1o0r|1O0R]], [[1tvy|1TVY]], [[1tw1|1TW1]], [[1tw5|1TW5]] | |||
|RESOURCES=<span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2ae7 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2ae7 OCA], [http://www.ebi.ac.uk/pdbsum/2ae7 PDBsum], [http://www.rcsb.org/pdb/explore.do?structureId=2ae7 RCSB]</span> | |||
}} | }} | ||
Line 14: | Line 17: | ||
==Overview== | ==Overview== | ||
beta-1,4-Galactosyltransferase-I (beta4Gal-T1) transfers galactose from UDP-galactose to N-acetylglucosamine (GlcNAc) residues of the branched N-linked oligosaccharide chains of glycoproteins. In an N-linked biantennary oligosaccharide chain, one antenna is attached to the 3-hydroxyl-(1,3-arm), and the other to the 6-hydroxyl-(1,6-arm) group of mannose, which is beta-1,4-linked to an N-linked chitobiose, attached to the aspargine residue of a protein. For a better understanding of the branch specificity of beta4Gal-T1 towards the GlcNAc residues of N-glycans, we have carried out kinetic and crystallographic studies with the wild-type human beta4Gal-T1 (h-beta4Gal-T1) and the mutant Met340His-beta4Gal-T1 (h-M340H-beta4Gal-T1) in complex with a GlcNAc-containing pentasaccharide and several GlcNAc-containing trisaccharides present in N-glycans. The oligosaccharides used were: pentasaccharide GlcNAcbeta1,2-Manalpha1,6 (GlcNAcbeta1,2-Manalpha1,3)Man; the 1,6-arm trisaccharide, GlcNAcbeta1,2-Manalpha1,6-Manbeta-OR (1,2-1,6-arm); the 1,3-arm trisaccharides, GlcNAcbeta1,2-Manalpha1,3-Manbeta-OR (1,2-1,3-arm) and GlcNAcbeta1,4-Manalpha1,3-Manbeta-OR (1,4-1,3-arm); and the trisaccharide GlcNAcbeta1,4-GlcNAcbeta1,4-GlcNAc (chitotriose). With the wild-type h-beta4Gal-T1, the K(m) of 1,2-1,6-arm is approximately tenfold lower than for 1,2-1,3-arm and 1,4-1,3-arm, and 22-fold lower than for chitotriose. Crystal structures of h-M340H-beta4Gal-T1 in complex with the pentasaccharide and various trisaccharides at 1.9-2.0A resolution showed that beta4Gal-T1 is in a closed conformation with the oligosaccharide bound to the enzyme, and the 1,2-1,6-arm trisaccharide makes the maximum number of interactions with the enzyme, which is in concurrence with the lowest K(m) for the trisaccharide. Present studies suggest that beta4Gal-T1 interacts preferentially with the 1,2-1,6-arm trisaccharide rather than with the 1,2-1,3-arm or 1,4-1,3-arm of a bi- or tri-antennary oligosaccharide chain of N-glycan. | beta-1,4-Galactosyltransferase-I (beta4Gal-T1) transfers galactose from UDP-galactose to N-acetylglucosamine (GlcNAc) residues of the branched N-linked oligosaccharide chains of glycoproteins. In an N-linked biantennary oligosaccharide chain, one antenna is attached to the 3-hydroxyl-(1,3-arm), and the other to the 6-hydroxyl-(1,6-arm) group of mannose, which is beta-1,4-linked to an N-linked chitobiose, attached to the aspargine residue of a protein. For a better understanding of the branch specificity of beta4Gal-T1 towards the GlcNAc residues of N-glycans, we have carried out kinetic and crystallographic studies with the wild-type human beta4Gal-T1 (h-beta4Gal-T1) and the mutant Met340His-beta4Gal-T1 (h-M340H-beta4Gal-T1) in complex with a GlcNAc-containing pentasaccharide and several GlcNAc-containing trisaccharides present in N-glycans. The oligosaccharides used were: pentasaccharide GlcNAcbeta1,2-Manalpha1,6 (GlcNAcbeta1,2-Manalpha1,3)Man; the 1,6-arm trisaccharide, GlcNAcbeta1,2-Manalpha1,6-Manbeta-OR (1,2-1,6-arm); the 1,3-arm trisaccharides, GlcNAcbeta1,2-Manalpha1,3-Manbeta-OR (1,2-1,3-arm) and GlcNAcbeta1,4-Manalpha1,3-Manbeta-OR (1,4-1,3-arm); and the trisaccharide GlcNAcbeta1,4-GlcNAcbeta1,4-GlcNAc (chitotriose). With the wild-type h-beta4Gal-T1, the K(m) of 1,2-1,6-arm is approximately tenfold lower than for 1,2-1,3-arm and 1,4-1,3-arm, and 22-fold lower than for chitotriose. Crystal structures of h-M340H-beta4Gal-T1 in complex with the pentasaccharide and various trisaccharides at 1.9-2.0A resolution showed that beta4Gal-T1 is in a closed conformation with the oligosaccharide bound to the enzyme, and the 1,2-1,6-arm trisaccharide makes the maximum number of interactions with the enzyme, which is in concurrence with the lowest K(m) for the trisaccharide. Present studies suggest that beta4Gal-T1 interacts preferentially with the 1,2-1,6-arm trisaccharide rather than with the 1,2-1,3-arm or 1,4-1,3-arm of a bi- or tri-antennary oligosaccharide chain of N-glycan. | ||
==About this Structure== | ==About this Structure== | ||
Line 32: | Line 32: | ||
[[Category: Ratner, D M.]] | [[Category: Ratner, D M.]] | ||
[[Category: Seeberger, P H.]] | [[Category: Seeberger, P H.]] | ||
[[Category: | [[Category: beta1,4-galactosyltransferase-i]] | ||
[[Category: | [[Category: closed conformation]] | ||
[[Category: | [[Category: mutant]] | ||
[[Category: pentasaccharide]] | |||
[[Category: | |||
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on | ''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Mon Mar 31 01:51:27 2008'' |
Revision as of 01:51, 31 March 2008
| |||||||
, resolution 2.00Å | |||||||
---|---|---|---|---|---|---|---|
Ligands: | , , , , , , | ||||||
Gene: | B4GALT1, GGTB2 (Homo sapiens) | ||||||
Activity: | N-acetyllactosamine synthase, with EC number 2.4.1.90 | ||||||
Related: | 1O0R, 1TVY, 1TW1, 1TW5
| ||||||
Resources: | FirstGlance, OCA, PDBsum, RCSB | ||||||
Coordinates: | save as pdb, mmCIF, xml |
Crystal Structure of Human M340H-Beta1,4-Galactosyltransferase-I (M340H-B4GAL-T1) in Complex with Pentasaccharide
OverviewOverview
beta-1,4-Galactosyltransferase-I (beta4Gal-T1) transfers galactose from UDP-galactose to N-acetylglucosamine (GlcNAc) residues of the branched N-linked oligosaccharide chains of glycoproteins. In an N-linked biantennary oligosaccharide chain, one antenna is attached to the 3-hydroxyl-(1,3-arm), and the other to the 6-hydroxyl-(1,6-arm) group of mannose, which is beta-1,4-linked to an N-linked chitobiose, attached to the aspargine residue of a protein. For a better understanding of the branch specificity of beta4Gal-T1 towards the GlcNAc residues of N-glycans, we have carried out kinetic and crystallographic studies with the wild-type human beta4Gal-T1 (h-beta4Gal-T1) and the mutant Met340His-beta4Gal-T1 (h-M340H-beta4Gal-T1) in complex with a GlcNAc-containing pentasaccharide and several GlcNAc-containing trisaccharides present in N-glycans. The oligosaccharides used were: pentasaccharide GlcNAcbeta1,2-Manalpha1,6 (GlcNAcbeta1,2-Manalpha1,3)Man; the 1,6-arm trisaccharide, GlcNAcbeta1,2-Manalpha1,6-Manbeta-OR (1,2-1,6-arm); the 1,3-arm trisaccharides, GlcNAcbeta1,2-Manalpha1,3-Manbeta-OR (1,2-1,3-arm) and GlcNAcbeta1,4-Manalpha1,3-Manbeta-OR (1,4-1,3-arm); and the trisaccharide GlcNAcbeta1,4-GlcNAcbeta1,4-GlcNAc (chitotriose). With the wild-type h-beta4Gal-T1, the K(m) of 1,2-1,6-arm is approximately tenfold lower than for 1,2-1,3-arm and 1,4-1,3-arm, and 22-fold lower than for chitotriose. Crystal structures of h-M340H-beta4Gal-T1 in complex with the pentasaccharide and various trisaccharides at 1.9-2.0A resolution showed that beta4Gal-T1 is in a closed conformation with the oligosaccharide bound to the enzyme, and the 1,2-1,6-arm trisaccharide makes the maximum number of interactions with the enzyme, which is in concurrence with the lowest K(m) for the trisaccharide. Present studies suggest that beta4Gal-T1 interacts preferentially with the 1,2-1,6-arm trisaccharide rather than with the 1,2-1,3-arm or 1,4-1,3-arm of a bi- or tri-antennary oligosaccharide chain of N-glycan.
About this StructureAbout this Structure
2AE7 is a Single protein structure of sequence from Homo sapiens. Full crystallographic information is available from OCA.
ReferenceReference
Oligosaccharide preferences of beta1,4-galactosyltransferase-I: crystal structures of Met340His mutant of human beta1,4-galactosyltransferase-I with a pentasaccharide and trisaccharides of the N-glycan moiety., Ramasamy V, Ramakrishnan B, Boeggeman E, Ratner DM, Seeberger PH, Qasba PK, J Mol Biol. 2005 Oct 14;353(1):53-67. PMID:16157350
Page seeded by OCA on Mon Mar 31 01:51:27 2008