1w9b: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
Line 16: Line 16:
     <text>to colour the structure by Evolutionary Conservation</text>
     <text>to colour the structure by Evolutionary Conservation</text>
   </jmolCheckbox>
   </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf].
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1w9b ConSurf].
<div style="clear:both"></div>
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
<div style="background-color:#fffaf0;">

Revision as of 23:45, 7 February 2016

S. ALBA MYROSINASE IN COMPLEX WITH CARBA-GLUCOTROPAEOLINS. ALBA MYROSINASE IN COMPLEX WITH CARBA-GLUCOTROPAEOLIN

Structural highlights

1w9b is a 1 chain structure with sequence from Sinapis alba. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:, , , , , , , ,
Activity:Thioglucosidase, with EC number 3.2.1.147
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Myrosinase, a thioglucoside glucohydrolase, is the only enzyme able to hydrolyse glucosinolates, a unique family of molecules bearing an anomeric O-sulfated thiohydroximate function. Non-hydrolysable myrosinase inhibitors have been devised and studied for their biological interaction. Diverse modifications of the O-sulfate moiety did not result in a significant inhibitory effect, whereas replacing the D-glucopyrano residue by its carba-analogue allowed inhibition to take place. X-Ray experiments carried out after soaking allowed for the first time inclusion of a non-hydrolysable inhibitor inside the enzymatic pocket. Structural tuning of the aglycon part in its pocket is being used as a guide for the development of simplified and more potent inhibitors.

The glucosinolate-myrosinase system. New insights into enzyme-substrate interactions by use of simplified inhibitors.,Bourderioux A, Lefoix M, Gueyrard D, Tatibouet A, Cottaz S, Arzt S, Burmeister WP, Rollin P Org Biomol Chem. 2005 May 21;3(10):1872-9. Epub 2005 Apr 14. PMID:15889170[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Bourderioux A, Lefoix M, Gueyrard D, Tatibouet A, Cottaz S, Arzt S, Burmeister WP, Rollin P. The glucosinolate-myrosinase system. New insights into enzyme-substrate interactions by use of simplified inhibitors. Org Biomol Chem. 2005 May 21;3(10):1872-9. Epub 2005 Apr 14. PMID:15889170 doi:10.1039/b502990b

1w9b, resolution 1.70Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA