4unr: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
Line 8: Line 8:
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4unr FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4unr OCA], [http://www.rcsb.org/pdb/explore.do?structureId=4unr RCSB], [http://www.ebi.ac.uk/pdbsum/4unr PDBsum]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4unr FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4unr OCA], [http://www.rcsb.org/pdb/explore.do?structureId=4unr RCSB], [http://www.ebi.ac.uk/pdbsum/4unr PDBsum]</span></td></tr>
</table>
</table>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
M. tuberculosis thymidylate kinase (Mtb TMK) has been shown in vitro to be an essential enzyme in DNA synthesis. In order to identify novel leads for Mtb TMK, we performed a high throughput biochemical screen and an NMR based fragment screen through which we discovered two novel classes of inhibitors, 3-cyanopyridones and 1,6-naphthyridin-2-ones, respectively. We describe three cyanopyridone subseries that arose during our hit to lead campaign, along with cocrystal structures of representatives with Mtb TMK. Structure aided optimization of the cyanopyridones led to single digit nanomolar inhibitors of Mtb TMK. Fragment based lead generation, augmented by crystal structures and the SAR from the cyanopyridones, enabled us to drive the potency of our 1,6-naphthyridin-2-one fragment hit from 500 muM to 200 nM while simultaneously improving the ligand efficiency. Cyanopyridone derivatives containing sulfoxides and sulfones showed cellular activity against M. tuberculosis. To the best of our knowledge, these compounds are the first reports of non-thymidine-like inhibitors of Mtb TMK.
Structure guided lead generation for M. tuberculosis thymidylate kinase (Mtb TMK): discovery of 3-cyanopyridone and 1,6-naphthyridin-2-one as potent inhibitors.,Naik M, Raichurkar A, Bandodkar BS, Varun BV, Bhat S, Kalkhambkar R, Murugan K, Menon R, Bhat J, Paul B, Iyer H, Hussein S, Tucker JA, Vogtherr M, Embrey KJ, McMiken H, Prasad S, Gill A, Ugarkar BG, Venkatraman J, Read J, Panda M J Med Chem. 2015 Jan 22;58(2):753-66. doi: 10.1021/jm5012947. Epub 2014 Dec 23. PMID:25486447<ref>PMID:25486447</ref>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
== References ==
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>

Revision as of 11:01, 22 July 2015

Mtb TMK in complex with compound 23Mtb TMK in complex with compound 23

Structural highlights

4unr is a 2 chain structure. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:,
Activity:dTMP kinase, with EC number 2.7.4.9
Resources:FirstGlance, OCA, RCSB, PDBsum

Publication Abstract from PubMed

M. tuberculosis thymidylate kinase (Mtb TMK) has been shown in vitro to be an essential enzyme in DNA synthesis. In order to identify novel leads for Mtb TMK, we performed a high throughput biochemical screen and an NMR based fragment screen through which we discovered two novel classes of inhibitors, 3-cyanopyridones and 1,6-naphthyridin-2-ones, respectively. We describe three cyanopyridone subseries that arose during our hit to lead campaign, along with cocrystal structures of representatives with Mtb TMK. Structure aided optimization of the cyanopyridones led to single digit nanomolar inhibitors of Mtb TMK. Fragment based lead generation, augmented by crystal structures and the SAR from the cyanopyridones, enabled us to drive the potency of our 1,6-naphthyridin-2-one fragment hit from 500 muM to 200 nM while simultaneously improving the ligand efficiency. Cyanopyridone derivatives containing sulfoxides and sulfones showed cellular activity against M. tuberculosis. To the best of our knowledge, these compounds are the first reports of non-thymidine-like inhibitors of Mtb TMK.

Structure guided lead generation for M. tuberculosis thymidylate kinase (Mtb TMK): discovery of 3-cyanopyridone and 1,6-naphthyridin-2-one as potent inhibitors.,Naik M, Raichurkar A, Bandodkar BS, Varun BV, Bhat S, Kalkhambkar R, Murugan K, Menon R, Bhat J, Paul B, Iyer H, Hussein S, Tucker JA, Vogtherr M, Embrey KJ, McMiken H, Prasad S, Gill A, Ugarkar BG, Venkatraman J, Read J, Panda M J Med Chem. 2015 Jan 22;58(2):753-66. doi: 10.1021/jm5012947. Epub 2014 Dec 23. PMID:25486447[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Naik M, Raichurkar A, Bandodkar BS, Varun BV, Bhat S, Kalkhambkar R, Murugan K, Menon R, Bhat J, Paul B, Iyer H, Hussein S, Tucker JA, Vogtherr M, Embrey KJ, McMiken H, Prasad S, Gill A, Ugarkar BG, Venkatraman J, Read J, Panda M. Structure guided lead generation for M. tuberculosis thymidylate kinase (Mtb TMK): discovery of 3-cyanopyridone and 1,6-naphthyridin-2-one as potent inhibitors. J Med Chem. 2015 Jan 22;58(2):753-66. doi: 10.1021/jm5012947. Epub 2014 Dec 23. PMID:25486447 doi:http://dx.doi.org/10.1021/jm5012947

4unr, resolution 1.98Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA