4xk8: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{Large structure}} | |||
==Crystal structure of plant photosystem I-LHCI super-complex at 2.8 angstrom resolution== | ==Crystal structure of plant photosystem I-LHCI super-complex at 2.8 angstrom resolution== | ||
<StructureSection load='4xk8' size='340' side='right' caption='[[4xk8]], [[Resolution|resolution]] 2.80Å' scene=''> | <StructureSection load='4xk8' size='340' side='right' caption='[[4xk8]], [[Resolution|resolution]] 2.80Å' scene=''> | ||
Line 5: | Line 6: | ||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=BCR:BETA-CAROTENE'>BCR</scene>, <scene name='pdbligand=CHL:CHLOROPHYLL+B'>CHL</scene>, <scene name='pdbligand=CLA:CHLOROPHYLL+A'>CLA</scene>, <scene name='pdbligand=DGD:DIGALACTOSYL+DIACYL+GLYCEROL+(DGDG)'>DGD</scene>, <scene name='pdbligand=HTG:HEPTYL+1-THIOHEXOPYRANOSIDE'>HTG</scene>, <scene name='pdbligand=LHG:1,2-DIPALMITOYL-PHOSPHATIDYL-GLYCEROLE'>LHG</scene>, <scene name='pdbligand=LMG:1,2-DISTEAROYL-MONOGALACTOSYL-DIGLYCERIDE'>LMG</scene>, <scene name='pdbligand=LMT:DODECYL-BETA-D-MALTOSIDE'>LMT</scene>, <scene name='pdbligand=LUT:(3R,3R,6S)-4,5-DIDEHYDRO-5,6-DIHYDRO-BETA,BETA-CAROTENE-3,3-DIOL'>LUT</scene>, <scene name='pdbligand=PQN:PHYLLOQUINONE'>PQN</scene>, <scene name='pdbligand=SF4:IRON/SULFUR+CLUSTER'>SF4</scene>, <scene name='pdbligand=XAT:(3S,5R,6S,3S,5R,6S)-5,6,5,6-DIEPOXY-5,6,5,6-+TETRAHYDRO-BETA,BETA-CAROTENE-3,3-DIOL'>XAT</scene></td></tr> | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=BCR:BETA-CAROTENE'>BCR</scene>, <scene name='pdbligand=CHL:CHLOROPHYLL+B'>CHL</scene>, <scene name='pdbligand=CLA:CHLOROPHYLL+A'>CLA</scene>, <scene name='pdbligand=DGD:DIGALACTOSYL+DIACYL+GLYCEROL+(DGDG)'>DGD</scene>, <scene name='pdbligand=HTG:HEPTYL+1-THIOHEXOPYRANOSIDE'>HTG</scene>, <scene name='pdbligand=LHG:1,2-DIPALMITOYL-PHOSPHATIDYL-GLYCEROLE'>LHG</scene>, <scene name='pdbligand=LMG:1,2-DISTEAROYL-MONOGALACTOSYL-DIGLYCERIDE'>LMG</scene>, <scene name='pdbligand=LMT:DODECYL-BETA-D-MALTOSIDE'>LMT</scene>, <scene name='pdbligand=LUT:(3R,3R,6S)-4,5-DIDEHYDRO-5,6-DIHYDRO-BETA,BETA-CAROTENE-3,3-DIOL'>LUT</scene>, <scene name='pdbligand=PQN:PHYLLOQUINONE'>PQN</scene>, <scene name='pdbligand=SF4:IRON/SULFUR+CLUSTER'>SF4</scene>, <scene name='pdbligand=XAT:(3S,5R,6S,3S,5R,6S)-5,6,5,6-DIEPOXY-5,6,5,6-+TETRAHYDRO-BETA,BETA-CAROTENE-3,3-DIOL'>XAT</scene></td></tr> | ||
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Photosystem_I Photosystem I], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=1.97.1.12 1.97.1.12] </span></td></tr> | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Photosystem_I Photosystem I], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=1.97.1.12 1.97.1.12] </span></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4xk8 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4xk8 OCA], [http://www.rcsb.org/pdb/explore.do?structureId=4xk8 RCSB], [http://www.ebi.ac.uk/pdbsum/4xk8 PDBsum]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4xk8 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4xk8 OCA], [http://pdbe.org/4xk8 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=4xk8 RCSB], [http://www.ebi.ac.uk/pdbsum/4xk8 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=4xk8 ProSAT]</span></td></tr> | ||
</table> | </table> | ||
{{Large structure}} | |||
== Function == | == Function == | ||
[[http://www.uniprot.org/uniprot/PSAC_PEA PSAC_PEA]] Apoprotein for the two 4Fe-4S centers FA and FB of photosystem I (PSI); essential for photochemical activity. FB is the terminal electron acceptor of PSI, donating electrons to ferredoxin. The C-terminus interacts with PsaA/B/D and helps assemble the protein into the PSI complex. Required for binding of PsaD and PsaE to PSI. PSI is a plastocyanin-ferredoxin oxidoreductase, converting photonic excitation into a charge separation, which transfers an electron from the donor P700 chlorophyll pair to the spectroscopically characterized acceptors A0, A1, FX, FA and FB in turn (By similarity).[HAMAP-Rule:MF_01303] [[http://www.uniprot.org/uniprot/PSAI_PEA PSAI_PEA]] May help in the organization of the PsaL subunit. [[http://www.uniprot.org/uniprot/CB23_PEA CB23_PEA]] The light-harvesting complex (LHC) functions as a light receptor, it captures and delivers excitation energy to photosystems with which it is closely associated.<ref>PMID:2174365</ref> May channel protons produced in the catalytic Mn center of water oxidation into the thylakoid lumen.<ref>PMID:2174365</ref> [[http://www.uniprot.org/uniprot/PSAJ_PHAVU PSAJ_PHAVU]] May help in the organization of the PsaE and PsaF subunits. | [[http://www.uniprot.org/uniprot/PSAC_PEA PSAC_PEA]] Apoprotein for the two 4Fe-4S centers FA and FB of photosystem I (PSI); essential for photochemical activity. FB is the terminal electron acceptor of PSI, donating electrons to ferredoxin. The C-terminus interacts with PsaA/B/D and helps assemble the protein into the PSI complex. Required for binding of PsaD and PsaE to PSI. PSI is a plastocyanin-ferredoxin oxidoreductase, converting photonic excitation into a charge separation, which transfers an electron from the donor P700 chlorophyll pair to the spectroscopically characterized acceptors A0, A1, FX, FA and FB in turn (By similarity).[HAMAP-Rule:MF_01303] [[http://www.uniprot.org/uniprot/PSAI_PEA PSAI_PEA]] May help in the organization of the PsaL subunit. [[http://www.uniprot.org/uniprot/CB23_PEA CB23_PEA]] The light-harvesting complex (LHC) functions as a light receptor, it captures and delivers excitation energy to photosystems with which it is closely associated.<ref>PMID:2174365</ref> May channel protons produced in the catalytic Mn center of water oxidation into the thylakoid lumen.<ref>PMID:2174365</ref> [[http://www.uniprot.org/uniprot/PSAJ_PHAVU PSAJ_PHAVU]] May help in the organization of the PsaE and PsaF subunits. | ||
Line 17: | Line 19: | ||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
</div> | </div> | ||
<div class="pdbe-citations 4xk8" style="background-color:#fffaf0;"></div> | |||
== References == | == References == | ||
<references/> | <references/> |
Revision as of 15:09, 12 April 2017
Crystal structure of plant photosystem I-LHCI super-complex at 2.8 angstrom resolutionCrystal structure of plant photosystem I-LHCI super-complex at 2.8 angstrom resolution
Structural highlights
Warning: this is a large structure, and loading might take a long time or not happen at all. Function[PSAC_PEA] Apoprotein for the two 4Fe-4S centers FA and FB of photosystem I (PSI); essential for photochemical activity. FB is the terminal electron acceptor of PSI, donating electrons to ferredoxin. The C-terminus interacts with PsaA/B/D and helps assemble the protein into the PSI complex. Required for binding of PsaD and PsaE to PSI. PSI is a plastocyanin-ferredoxin oxidoreductase, converting photonic excitation into a charge separation, which transfers an electron from the donor P700 chlorophyll pair to the spectroscopically characterized acceptors A0, A1, FX, FA and FB in turn (By similarity).[HAMAP-Rule:MF_01303] [PSAI_PEA] May help in the organization of the PsaL subunit. [CB23_PEA] The light-harvesting complex (LHC) functions as a light receptor, it captures and delivers excitation energy to photosystems with which it is closely associated.[1] May channel protons produced in the catalytic Mn center of water oxidation into the thylakoid lumen.[2] [PSAJ_PHAVU] May help in the organization of the PsaE and PsaF subunits. Publication Abstract from PubMedPhotosynthesis converts solar energy to chemical energy by means of two large pigment-protein complexes: photosystem I (PSI) and photosystem II (PSII). In higher plants, the PSI core is surrounded by a large light-harvesting complex I (LHCI) that captures sunlight and transfers the excitation energy to the core with extremely high efficiency. We report the structure of PSI-LHCI, a 600-kilodalton membrane protein supercomplex, from Pisum sativum (pea) at a resolution of 2.8 angstroms. The structure reveals the detailed arrangement of pigments and other cofactors-especially within LHCI-as well as numerous specific interactions between the PSI core and LHCI. These results provide a firm structural basis for our understanding on the energy transfer and photoprotection mechanisms within the PSI-LHCI supercomplex. Photosynthesis. Structural basis for energy transfer pathways in the plant PSI-LHCI supercomplex.,Qin X, Suga M, Kuang T, Shen JR Science. 2015 May 29;348(6238):989-95. doi: 10.1126/science.aab0214. PMID:26023133[3] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|