4dxi: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
==Crystal Structure of an Ancestor of All Faviina Proteins==
==Crystal Structure of an Ancestor of All Faviina Proteins==
<StructureSection load='4dxi' size='340' side='right' caption='[[4dxi]], [[Resolution|resolution]] 1.60&Aring;' scene=''>
<StructureSection load='4dxi' size='340' side='right' caption='[[4dxi]], [[Resolution|resolution]] 1.60&Aring;' scene=''>
Line 6: Line 7:
<tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=CRQ:[2-(3-CARBAMOYL-1-IMINO-PROPYL)-4-(4-HYDROXY-BENZYLIDENE)-5-OXO-4,5-DIHYDRO-IMIDAZOL-1-YL]-ACETIC+ACID'>CRQ</scene></td></tr>
<tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=CRQ:[2-(3-CARBAMOYL-1-IMINO-PROPYL)-4-(4-HYDROXY-BENZYLIDENE)-5-OXO-4,5-DIHYDRO-IMIDAZOL-1-YL]-ACETIC+ACID'>CRQ</scene></td></tr>
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[4dxm|4dxm]], [[4dxn|4dxn]], [[4dxo|4dxo]], [[4dxp|4dxp]], [[4dxq|4dxq]]</td></tr>
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[4dxm|4dxm]], [[4dxn|4dxn]], [[4dxo|4dxo]], [[4dxp|4dxp]], [[4dxq|4dxq]]</td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4dxi FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4dxi OCA], [http://www.rcsb.org/pdb/explore.do?structureId=4dxi RCSB], [http://www.ebi.ac.uk/pdbsum/4dxi PDBsum]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4dxi FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4dxi OCA], [http://pdbe.org/4dxi PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=4dxi RCSB], [http://www.ebi.ac.uk/pdbsum/4dxi PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=4dxi ProSAT]</span></td></tr>
</table>
</table>
<div style="background-color:#fffaf0;">
<div style="background-color:#fffaf0;">
Line 16: Line 17:
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
</div>
 
<div class="pdbe-citations 4dxi" style="background-color:#fffaf0;"></div>
==See Also==
*[[Green Fluorescent Protein|Green Fluorescent Protein]]
== References ==
== References ==
<references/>
<references/>

Revision as of 21:45, 1 February 2017

Crystal Structure of an Ancestor of All Faviina ProteinsCrystal Structure of an Ancestor of All Faviina Proteins

Structural highlights

4dxi is a 4 chain structure with sequence from Synthetic construct sequences. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:
NonStd Res:
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Publication Abstract from PubMed

In proteins, functional divergence involves mutations that modify structure and dynamics. Here we provide experimental evidence for an evolutionary mechanism driven solely by long-range dynamic motions without significant backbone adjustments, catalytic group rearrangements, or changes in subunit assembly. Crystallographic structures were determined for several reconstructed ancestral proteins belonging to a GFP class frequently employed in superresolution microscopy. Their chain flexibility was analyzed using molecular dynamics and perturbation response scanning. The green-to-red photoconvertible phenotype appears to have arisen from a common green ancestor by migration of a knob-like anchoring region away from the active site diagonally across the beta barrel fold. The allosterically coupled mutational sites provide active site conformational mobility via epistasis. We propose that light-induced chromophore twisting is enhanced in a reverse-protonated subpopulation, activating internal acid-base chemistry and backbone cleavage to enlarge the chromophore. Dynamics-driven hinge migration may represent a more general platform for the evolution of novel enzyme activities.

A hinge migration mechanism unlocks the evolution of green-to-red photoconversion in GFP-like proteins.,Kim H, Zou T, Modi C, Dorner K, Grunkemeyer TJ, Chen L, Fromme R, Matz MV, Ozkan SB, Wachter RM Structure. 2015 Jan 6;23(1):34-43. doi: 10.1016/j.str.2014.11.011. PMID:25565105[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Kim H, Zou T, Modi C, Dorner K, Grunkemeyer TJ, Chen L, Fromme R, Matz MV, Ozkan SB, Wachter RM. A hinge migration mechanism unlocks the evolution of green-to-red photoconversion in GFP-like proteins. Structure. 2015 Jan 6;23(1):34-43. doi: 10.1016/j.str.2014.11.011. PMID:25565105 doi:http://dx.doi.org/10.1016/j.str.2014.11.011

4dxi, resolution 1.60Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA