Ferrochelatase: Difference between revisions
Michal Harel (talk | contribs) No edit summary |
Michal Harel (talk | contribs) No edit summary |
||
Line 1: | Line 1: | ||
<StructureSection load='1c1h' size=' | <StructureSection load='1c1h' size='350' side='right' scene='' caption='Ferrochelatase with methylmesoporphyrin and Mg+2 ion (PDB code [[1c1h]])'> | ||
'''Ferrochelatase''' (FECH) catalyzes the last step in the formation of heme. FECH adds Fe+2 to protoporphyrin IX converting it to protoheme. The human FECH is a homodimer containing 2 similar domains and an iron-sulfur cluster. Defective FECH is the cause of porphyria. | '''Ferrochelatase''' (FECH) catalyzes the last step in the formation of heme. FECH adds Fe+2 to protoporphyrin IX converting it to protoheme. The human FECH is a homodimer containing 2 similar domains and an iron-sulfur cluster. Defective FECH is the cause of porphyria. |
Revision as of 23:26, 21 January 2016
Ferrochelatase (FECH) catalyzes the last step in the formation of heme. FECH adds Fe+2 to protoporphyrin IX converting it to protoheme. The human FECH is a homodimer containing 2 similar domains and an iron-sulfur cluster. Defective FECH is the cause of porphyria. Bacterial ferrochelatase turns human: Tyr13 determines the apparent metal specificity of Bacillus subtilis ferrochelatase [1] Ferrochelatase produces . It can also . However, the ability to insert other . In this way Bacillus subtilis ferrochelatase can insert copper into protoporphyrin IX, but to a much less extent cobalt. In contrast, the human and Saccharomyces cerevisiae ferrochelatases prefer cobalt over copper. shows that , while A third residue, Tyr in B. subtilis, is a third ligand via a water molecule. Human and S. cerevisiae ferrochelatase utilizes In the structures of the ferrochelatases the Tyr/Met occupies the same position. We also know that the Tyr residue of the is a . By site directed mutagenesis and showed that the metal specificity changed so that the modified B. subtilis ferrochelatase . Two crystal structures are presented. how . The how a in the B. subtilis enzyme. |
|
3D structures of ferrochelatase3D structures of ferrochelatase
Updated on 21-January-2016
References
- ↑ Hansson MD, Karlberg T, Soderberg CA, Rajan S, Warren MJ, Al-Karadaghi S, Rigby SE, Hansson M. Bacterial ferrochelatase turns human: Tyr13 determines the apparent metal specificity of Bacillus subtilis ferrochelatase. J Biol Inorg Chem. 2010 Nov 4. PMID:21052751 doi:10.1007/s00775-010-0720-4