2qfg: Difference between revisions
No edit summary |
No edit summary |
||
Line 7: | Line 7: | ||
|ACTIVITY= | |ACTIVITY= | ||
|GENE= CFH, HF, HF1, HF2 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 Homo sapiens]) | |GENE= CFH, HF, HF1, HF2 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 Homo sapiens]) | ||
|DOMAIN= | |||
|RELATEDENTRY=[[1haq|1haq]], [[2qfh|2QFH]] | |||
|RESOURCES=<span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2qfg FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2qfg OCA], [http://www.ebi.ac.uk/pdbsum/2qfg PDBsum], [http://www.rcsb.org/pdb/explore.do?structureId=2qfg RCSB]</span> | |||
}} | }} | ||
Line 14: | Line 17: | ||
==Overview== | ==Overview== | ||
Factor H (FH) is a plasma glycoprotein that plays a central role in regulation of the alternative pathway of complement. It is composed of 20 short complement regulator (SCR) domains. The SCR-1/5 fragment is required for decay acceleration and cofactor activity, while the SCR-16/20 fragment possesses binding sites for complement C3d and heparin. X-ray scattering and analytical ultracentrifugation showed that SCR-1/5 was monomeric, while SCR-16/20 formed dimers. The Guinier radius of gyration R(G) of 4.3 nm for SCR-1/5 and those of 4.7 nm and about 7.8 nm for monomeric and dimeric SCR-16/20, respectively, showed that their structures are partially folded back and bent. The distance distribution function P(r) showed that SCR-1/5 has a maximum dimension of 15 nm while monomeric and dimeric SCR-16/20 are 17 nm and about 27 nm long, respectively. The sedimentation coefficient of 2.4 S for SCR-1/5 showed no concentration-dependence, while that for SCR-16/20 was 2.8 S for the monomer and 3.9 S for the dimer. Sedimentation equilibrium data showed that SCR-1/5 is monomeric while SCR-16/20 exhibited a weak monomer-dimer equilibrium with a dissociation constant of 16 microM. The constrained scattering and sedimentation modelling of SCR-1/5 and SCR-16/20 showed that partially folded-back and bent flexible SCR arrangements fitted both data sets better than extended linear arrangements, and that the dimer was best modelled in the SCR-16/20 model by an end-to-end association of two SCR-20 domains. The SCR-1/5 and SCR-16/20 models were conformationally similar to the previously determined partially folded-back structure for intact wild-type FH, hence suggesting a partial explanation of the intact FH structure. Comparison of the SCR-16/20 model with the crystal structure of C3b clarified reasons for the distribution of mutations leading to atypical haemolytic uraemic syndrome. | Factor H (FH) is a plasma glycoprotein that plays a central role in regulation of the alternative pathway of complement. It is composed of 20 short complement regulator (SCR) domains. The SCR-1/5 fragment is required for decay acceleration and cofactor activity, while the SCR-16/20 fragment possesses binding sites for complement C3d and heparin. X-ray scattering and analytical ultracentrifugation showed that SCR-1/5 was monomeric, while SCR-16/20 formed dimers. The Guinier radius of gyration R(G) of 4.3 nm for SCR-1/5 and those of 4.7 nm and about 7.8 nm for monomeric and dimeric SCR-16/20, respectively, showed that their structures are partially folded back and bent. The distance distribution function P(r) showed that SCR-1/5 has a maximum dimension of 15 nm while monomeric and dimeric SCR-16/20 are 17 nm and about 27 nm long, respectively. The sedimentation coefficient of 2.4 S for SCR-1/5 showed no concentration-dependence, while that for SCR-16/20 was 2.8 S for the monomer and 3.9 S for the dimer. Sedimentation equilibrium data showed that SCR-1/5 is monomeric while SCR-16/20 exhibited a weak monomer-dimer equilibrium with a dissociation constant of 16 microM. The constrained scattering and sedimentation modelling of SCR-1/5 and SCR-16/20 showed that partially folded-back and bent flexible SCR arrangements fitted both data sets better than extended linear arrangements, and that the dimer was best modelled in the SCR-16/20 model by an end-to-end association of two SCR-20 domains. The SCR-1/5 and SCR-16/20 models were conformationally similar to the previously determined partially folded-back structure for intact wild-type FH, hence suggesting a partial explanation of the intact FH structure. Comparison of the SCR-16/20 model with the crystal structure of C3b clarified reasons for the distribution of mutations leading to atypical haemolytic uraemic syndrome. | ||
==About this Structure== | ==About this Structure== | ||
Line 46: | Line 46: | ||
[[Category: x-ray scattering]] | [[Category: x-ray scattering]] | ||
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on | ''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Mon Mar 31 04:48:43 2008'' |
Revision as of 04:48, 31 March 2008
| |||||||
Gene: | CFH, HF, HF1, HF2 (Homo sapiens) | ||||||
Related: | 1haq, 2QFH
| ||||||
Resources: | FirstGlance, OCA, PDBsum, RCSB | ||||||
Coordinates: | save as pdb, mmCIF, xml |
Solution Structure of the N-terminal SCR-1/5 fragment of Complement Factor H.
OverviewOverview
Factor H (FH) is a plasma glycoprotein that plays a central role in regulation of the alternative pathway of complement. It is composed of 20 short complement regulator (SCR) domains. The SCR-1/5 fragment is required for decay acceleration and cofactor activity, while the SCR-16/20 fragment possesses binding sites for complement C3d and heparin. X-ray scattering and analytical ultracentrifugation showed that SCR-1/5 was monomeric, while SCR-16/20 formed dimers. The Guinier radius of gyration R(G) of 4.3 nm for SCR-1/5 and those of 4.7 nm and about 7.8 nm for monomeric and dimeric SCR-16/20, respectively, showed that their structures are partially folded back and bent. The distance distribution function P(r) showed that SCR-1/5 has a maximum dimension of 15 nm while monomeric and dimeric SCR-16/20 are 17 nm and about 27 nm long, respectively. The sedimentation coefficient of 2.4 S for SCR-1/5 showed no concentration-dependence, while that for SCR-16/20 was 2.8 S for the monomer and 3.9 S for the dimer. Sedimentation equilibrium data showed that SCR-1/5 is monomeric while SCR-16/20 exhibited a weak monomer-dimer equilibrium with a dissociation constant of 16 microM. The constrained scattering and sedimentation modelling of SCR-1/5 and SCR-16/20 showed that partially folded-back and bent flexible SCR arrangements fitted both data sets better than extended linear arrangements, and that the dimer was best modelled in the SCR-16/20 model by an end-to-end association of two SCR-20 domains. The SCR-1/5 and SCR-16/20 models were conformationally similar to the previously determined partially folded-back structure for intact wild-type FH, hence suggesting a partial explanation of the intact FH structure. Comparison of the SCR-16/20 model with the crystal structure of C3b clarified reasons for the distribution of mutations leading to atypical haemolytic uraemic syndrome.
About this StructureAbout this Structure
2QFG is a Single protein structure of sequence from Homo sapiens. Full crystallographic information is available from OCA.
ReferenceReference
The regulatory SCR-1/5 and cell surface-binding SCR-16/20 fragments of factor H reveal partially folded-back solution structures and different self-associative properties., Okemefuna AI, Gilbert HE, Griggs KM, Ormsby RJ, Gordon DL, Perkins SJ, J Mol Biol. 2008 Jan 4;375(1):80-101. Epub 2007 Sep 14. PMID:18005991
Page seeded by OCA on Mon Mar 31 04:48:43 2008
Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)
OCA- Pages with broken file links
- Homo sapiens
- Single protein
- Gilbert, H E.
- Gordon, D L.
- Griggs, K M.
- Okemefuna, A I.
- Ormsby, R J.
- Perkins, S J.
- Age-related macular degeneration
- Alternative splicing
- Complement
- Complement alternate pathway
- Disease mutation
- Factor h
- Glycoprotein
- Immune response
- Immune system
- Innate immunity
- Polymorphism
- Scr domain
- Sushi
- X-ray scattering